

FOUNDATIONS OF JAVA PROGRAMMING

FOR THE OBJECT-ORIENTED PROGRAMMING OPTION

OF THE INTERNATIONAL BACCALAUREATE

COMPUTER SCIENCE EXAM

Călin Galeriu, Ph.D.

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

2

Copyright © 2020 by Călin Galeriu (with the exception of the comics)

All rights reserved.

First printing: April 2020, www.lulu.com

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

 3

TABLE OF CONTENTS

Introduction ……………………………………………………………………………. 5

1. Three options for running the HelloWorld Java program …………………….…. 6

 1.1. The online Java compiler option

 1.2. Installing the NetBeans Java Integrated Development Environment

 1.3. The NetBeans Java Integrated Development Environment option

 1.4. The Command Line Interface option (javac.exe and java.exe)

2. Why does the simplest Java program look so complicated? …………………..... 10

 2.1. The BASIC version of the HelloWorld program

 2.2. The C version of the HelloWorld program

 2.3. The Java version of the HelloWorld program

3. Variables: primitive variable types, text strings, and constants …………........... 12

4. Data input from the keyboard with the Scanner and IBIO classes ………….…. 15

5. Operators: arithmetic, relational, and logical …………………………………… 18

 5.1. The Java arithmetic operators

 5.1. The Java relational operators

 5.1. The Java logical operators

6. Control flow: conditional statements ……………………………………………... 21

 6.1. The IF structure

 6.2. The IF-ELSE structure

 6.3. The SWITCH structure

7. Control flow: loops ……………………………………………………………….... 27

 7.1. The FOR loop

 7.2. The WHILE and the DO...WHILE loops

8. Functions: input and output values, formal and actual parameters ………….... 32

9. Java objects: methods of the Math, String, and StringBuffer classes ……….…. 35

 9.1. Important methods and constants of the Math class

 9.2. Important methods of the String class

 9.3. Important methods of the StringBuffer class

10. Java objects: introduction to Object-Oriented Programming ……………….... 40

 10.1. The constructor

 10.2. Accessing members of a class or object from a different class or object

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

4

 10.3. Encapsulation

 10.4. Method overloading

11. Variables: instance variables and static variables …………………………..…. 47

12. Java objects: 1D and 2D arrays ………………………………………………..... 49

13. Functions: call by value and call by reference ……………………………….…. 55

14. Java programs with command line parameters ………………………………... 58

15. Java objects: the ArrayList and the LinkedList classes ……………………….. 60

 15.1. The ArrayList class

 15.2. Important methods of the ArrayList class

 15.3. The LinkedList class

 15.4. Important methods of the ArrayList class

 15.5. Pseudocode methods for collections

16. Random numbers ……………………………………………………………...…. 65

 16.1. Generating random numbers using the Math.random() method

 16.2. Generating random numbers using the Random class

 16.3. The shuffle() method of the Java Collections class

 16.4. Important static methods of the Java wrapper classes

17. Object-Oriented Programming: Encapsulation ……………………………..…. 69

 17.1. Accessor (getter) and mutator (setter) methods

 17.2. The JAVA access modifiers: public, private, protected

18. Object-Oriented Programming: Inheritance ………………………………….... 72

19. Object-Oriented Programming: Polymorphism …………………………….…. 76

 19.1. Method overloading (compile time polymorphism)

 19.2. Method overriding (run time polymorphism)

20. The relationships between Java classes, and their UML diagrams ………….... 82

 20.1. The "IS A" relationship (inheritance)

 20.2. The "HAS A" relationship (aggregation)

 20.3. The "USES A" relationship (dependency)

21. Reading from and writing into text files ………………………………………... 85

 21.1. Reading from a text file in sequential order

 21.2. Writing into a text file in sequential order

 21.3. Reading from and writing into a text file in random order

22. Quizmaker - an example of a useful Java application ………………………..... 95

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

 5

Introduction

During the 2017-1018 school year I taught Computer Science (CS) at the Mark Twain International

School in Romania. It was a small class of high school students preparing to take the International

Baccalaureate (IB) exams in May 2019. The Computer Science Option selected by these students was

Object-Oriented Programming, which is usually taught based on computer programming in Java. On

this occasion I discovered that there were no good teaching resources specifically tailored for this task.

The Java textbooks on the market were huge books with hundreds of pages covering a lot of material

that was not needed for the IB CS exam. Students preparing for the comprehensive IB exams may not

have the extra time to study advanced programming topics like Java applets, graphics, or anything else

not included in the IB CS curriculum. What was even worse, I found that many Java programs

presented in these books were very long, often going on and on over several pages. While professional

programmers would have no trouble dissecting such computer programs, I was afraid that many high

school students would find themselves on a very steep learning curve, with negative effects on their

self-confidence and motivation. I personally believe that an introduction to any programming language

has to be based on short programs, short enough that the students will type all of these programs with

their own hands, line by line, before compiling and executing them. This educational philosophy, this

teaching strategy, closely mirrors the best practice of requiring the students to copy in their notebooks

all the information written by the teacher on the whiteboard. When the information travels on this path

from the whiteboard to the notebook, going through the students' eyes, brains, arms, and hands, this is

when the information is being processed, this is when active learning takes place. I therefore decided to

write my own class notes, an introduction to the Java programming language based on short Java

programs, each one of them no longer than a single page (with the exception of just one longer program

at the end of this book). Of course, once the Java programming concepts are fully mastered with the

help of the short Java programs from this book, the students are encouraged to continue to improve their

computer science and Java programming skills with the help of other textbooks that make use of longer

and more complex Java programs. To facilitate future growth, I also included in this textbook a few

Java topics that are not (yet) needed for the IB CS exam, like the switch structure and the use of

command line parameters. I hope that in this way I have reinforced all the material presented in my

Foundations of Java Programming. Another thing that makes this textbook different is that you will

notice some repetition. Some important keywords and computer science concepts are presented several

times, because the final goal is not just learning how to program in Java, but also getting good marks on

the IB CS exam. The students need to see the important material often. Only through repetition the

computer science topics will be retained, and the technical vocabulary and the algorithms will stick into

their (your) long term memory.

Last but not least, I would like to express my gratitude to all the people who have filled the Internet with

very useful information about computer science and the Java programming language, including the

comics. Many thanks to the websites with free online Java compilers, and to Oracle and NetBeans.

Even though I went through several revisions of this typed material, I am sure that these class notes can

still be improved. If you find any typos, errors, bugs, or if you have any useful suggestions, please email

me at cgaleriu@yahoo.com .

Thank you,

Călin Galeriu

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

6

1. Three options for running the HelloWorld Java program

There are three possible ways to type, compile, and execute a Java program.

You may use an online Java compiler. This is the best option for very short programs. Be aware that,

because of security concerns, Java programs executed by an online compiler will not be able to read

from and write into text files on your computer's hard drive.

You may use an Integrated Development Environment (IDE). Two very popular options are the

NetBeans IDE and the Eclipse IDE. Your Java programming will not come to a halt whenever the

Internet connection is down. The IDE option is preferred for longer Java programs, which are written as

stand-alone applications. Remember that you will have to write such a long and complex Java program

for your IB CS Internal Assessment component.

You may also use a Command Line Interface (CLI) programming environment. This option avoids

the Graphical User Interface (GUI) of the friendlier IDE, and is very seldom used. The javac.exe

compiler and the java.exe interpreter are needed for Java programs that use command line parameters.

1.1. The online Java compiler option

Step 1. Launch your trusted Internet browser and then go to:

https://www.onlinegdb.com/

Back-up plan: If the above web site is not working then to go to:

https://www.jdoodle.com/online-java-compiler/

Step 2. From the drop-down Language menu, in the upper right corner of the web page, select Java .

The HelloWorld Java program will automatically shows up.

The online compiler at www.onlinegdb.com does not use a package name, all the Java source files are

automatically made part of the same package. The name of the first Java source file is Main.java , and

the name of the public class in this file is Main . These two names cannot be changed to something else.

Step 3. Delete all the comments that were automatically included in the Java program, and align the

curly braces on the left side. The HelloWorld Java program should look like this:

Step 4. Click on the green Run button.

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

 7

1.2. Installing the NetBeans Java Integrated Development Environment

When you are downloading and installing the NetBeans Integrated Development Environment (IDE)

you are also downloading and installing the Java Development Kit (JDK) with Java 8.

Step 1. Go to:

https://www.oracle.com/technetwork/java/javase/downloads/jdk-netbeans-jsp-3413139-esa.html

Step 2. Check the Accept License Agreement option.

Step 3. Click on the appropriate download link. For a not too old PC running the Windows operating

system, the file to download is jdk-8u111-nb-8_2-windows-x64.exe .

Warning! You need to have PC administrator rights in order to move forward with the installation

process.

Step 4. Click on the downloaded file.

Step 5. Click on the Next button three times, then click on the Install button.

Step 6. Uncheck the box that says "Contribute to the NetBeans project by providing anonymous usage

data" and then click on the Finish button.

Step 7. Double click on the NetBeans shortcut link on the desktop whenever you want to

launch the NetBeans Integrated Development Environment (IDE).

1.3. The NetBeans Java Integrated Development Environment option

After downloading and installing the NetBeans IDE, you are ready to type, compile, and execute the

HelloWorld Java program in this programming environment.

Step 1. Double click on the NetBeans shortcut link on the desktop.

Step 2. From the menu select File|New Project... or click on the New Project button.

Step 3. In the New Project window the Java Application option should be already selected. Click on

the Next button.

Step 4. In the New Java Application window type the HelloWorld project name. The Create Main

Class checkbox should be checked. Click on the Finish button.

The HelloWorld project name was used by NetBeans in three different places. The name of the newly

created Java source file is HelloWorld.java , the name of the related Java package is helloworld , and

the name of the related Java class is HelloWorld .

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

8

Step 5. Delete all the comments that were automatically included in the Java program, and align the

curly braces on the left side.

In Java, anything that follows the double forward slash // , all the way to the end of the line, is a

comment . Multi-line comments can be added between the /* and */ marks. Special /** marks are used

for Javadoc comments. Javadoc comments are not needed for the IB CS exam.

Step 6. Type the line: System.out.println("Hello World!");

The program should look like this:

Step 7. Click on the Save All button.

Step 8. Click on the Run Project button.

1.4. The Command Line Interface option (javac.exe and java.exe)

Step 1. Go to the root of your hard disk (C:\) and create a new folder. Right-click with the mouse, then

select New|Folder . Change the name of the folder from New folder to JavaPrograms .

Step 2. Inside the JavaPrograms folder create a new text file. Right-click with the mouse, then select

New|Text Document . Change the name of the text file from New Text Document.txt to

HelloWorld.java . The computer will give you a warning message that you should ignore.

Warning! Sometimes you cannot see the file name extension, and as a result you cannot change it from

.txt to .java . To make the file name extension visible you should search for Folder Options (in

Windows 8) or File Explorer Options (in Windows 10), and then uncheck the Hide extensions for

files of known type check box.

Step 3. Using Notepad, open the HelloWorld.java source file, type the Java program as shown below,

and then save the text file and close Notepad. The HelloWorld.java source file should look like this:

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

 9

Step 4. Open a Command Prompt window. Search for Command Prompt if you need to find it.

Step 5a. Type cd C:\JavaPrograms<ENTER>. This will move the command prompt to the

JavaPrograms directory (folder), which becomes the current directory.

Step 5b. Type dir<ENTER>. This will show all the files and folders in the current directory. You

should have the HelloWorld.java Java source file there.

Step 5c. Type set path=C:\Program Files\Java\jdk1.8.0_111\bin<ENTER> with no extra spaces. This

will tell the computer where to find the javac.exe and the java.exe executable files.

Warning! If you have a different version of the Java Development Kit (JDK) installed, then you will

have to modify the numbers in the above path accordingly.

Step 5d. Type javac HelloWorld.java<ENTER>. The javac.exe compiler will compile the Java source

file into Bytecode language, and then it will save the compiled output into HelloWorld.class , a Java

.class file. At this step some students get confused because "nothing happens". Be happy if the

computer doesn't print anything now, because this means that there is no error message!

Step 5e. Type dir<ENTER>. Verify that the HelloWorld.class file is indeed there.

Step 5f. Type java HelloWorld<ENTER>. The java.exe interpreter (the Java Virtual Machine) will

turn the Bytecode into machine code, and then the machine code will get executed, one instruction at a

time. The machine code is specific to the computer that runs the program, but since the Bytecode

language is very close to the actual machine code language, the java.exe interpreter is super-fast.

A successful compilation and execution of the HelloWorld Java program looks like this:

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

10

2. Why does the simplest Java program look so complicated?

The HelloWorld program is, traditionally, the first program that someone new to computer

programming learns. This is the simplest program in any programming language. This short computer

program is meant to decrease anxiety, build self-confidence, and give the students a good start on a

smooth learning path. But why does this HelloWorld , the simplest Java program, look so complicated?

The answer to this question is related to the historical evolution of computer programming languages.

2.1. The BASIC version of the HelloWorld program

The BASIC version of the HelloWorld program looks like this:

10 PRINT "Hello World!"

A BASIC program consists of a sequence of numbered instruction lines. The entry point of a computer

program is the first instruction that gets executed. The entry point of a BASIC program is either the

first line of that program, or the line number specified after the RUN command (when it is given).

2.2. The C version of the HelloWorld program

The C version of the HelloWorld program looks like this:

#include <stdio.h>

void main()

{

 printf("Hello World!");

}

Instead of PRINT , a simple BASIC command, we now have printf() , a C function. The first line tells

the C compiler that the printf() function will be found in the stdio library. Presumably we could find a

different printf() function in a different library. This was not an option in BASIC, where PRINT is a

keyword, and where the printing of text is automatically done on the PC monitor.

A semicolon ; character is needed at the end of the printf() instruction.

A C program consists of a series of declarations and definitions of variables and functions, and also the

instructions that use these variables and functions. C programs don't have line numbers, that was a good

idea only when computer programs were not very long. The entry point of a C program is the main()

function.

In our simple C program the main() function does not return any value, therefore its output is of type

void . This is not always the case, in general the main() function can return an integer number of type

int , which then can be used by the operating system as an error code.

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

 11

2.3. The Java version of the HelloWorld program

The Java version of the HelloWorld program looks like this:

// Java Example 1

public class Main

{

 public static void main(String[] args)

 {

 System.out.println("Hello World!");

 }

}

The first line, which starts with a double forward slash, is just a comment line. In Java anything from a

double forward slash // until the end on the line is a comment.

In contrast to the C program above, the main() function of the Java program is now nested inside

another structure, the definition of the public class Main . This is because in Java everything must be

part of a class. A Java class is a template for Java objects, the same way a cookie cutter is a template for

cookies. A Java object is a data structure that may contain variables, functions, or other objects. The

class of an object is like the variable type of a variable. The class definition describes what variables

(also called fields, attributes, or properties), functions (also called methods), or other objects an object

of that given class may have. In our example the Main class has only one function, the function named

main() . The entry point of a Java program is the main() function.

We notice that the main() function has an input argument, String[] args , which stands for an array of

String objects. String objects are used by Java programs to handle text strings. The HelloWorld C

program could also be written with input arguments, just like the Java program, but since the input

arguments (the command line parameters) are never used by our HelloWorld program, that would be an

unnecessary complication. In Java we have to include the input arguments, regardless of whether we use

them or not. Java programs with command line parameters are discussed in Chapter 14.

The keyword public means that the Main class and the main() function can be seen from anywhere in

the program. The keyword static means that there is only one copy of the main() function, existing in

Random Access Memory (RAM) without the need to create an object of class Main .

A semicolon ; character is needed at the end of the System.out.println() instruction. A semicolon is

needed after every Java program instruction.

System.out is a Java object that manages the output of alphanumeric characters on the PC monitor, and

println() is a function (a method) of the System.out object, used for printing alphanumeric text one line

at a time.

In summary, the Java program needs a main() function because this is the entry point of the program. In

Java the main() function can exist only as a public static method of a public class. The Java main()

function has to declare the input arguments (the command line parameters) String[] args regardless of

whether these input arguments are used by the Java program or not.

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

12

3. Variables: primitive variable types, text strings, and constants

Remember that in mathematics a variable x is a placeholder for a number. The number x may be an

unknown, like for example in the equation 2x + 3 = 5 , or the number x may take different values, like

for example in the slope-intercept equation of a straight line y = 2x + 3 .

In computer programming variables work in the same way. Inside a computer the content (the value) of

a variable is stored in Random Access Memory (RAM), occupying a given amount of space at a given

memory address. In general a variable has:

 A name (the name of a storage location), for example x .

 A type, for example int, when the variable is a signed integer number .

 A value (the content of the storage location), for example 505 .

 An address in RAM. In Java we do not have direct access to this information.

 A size in RAM. In Java a variable of type int is stored in RAM using 4 bytes = 32 bits.

 A scope. The variable exists, while the program is running, only in a part of the code.

Warning! In Java a variable exists only between the nearest set of closed curly braces { } that contain

the declaration of that variable.

A declaration statement gives the type of a variable. For example: int x;

An assignment statement gives the value of a variable. For example: x = 505;

In general the declaration of the type of a variable must be done before the assignment of a value to that

variable.

An initialization statement brings together the declaration of a variable and the initial assignment of a

value. For example: int x = 505;

Java has 8 primitive variable types. We call them primitive because they come as a standard feature of

the Java language, to distinguish them from user defined variable types. The name, size in RAM, and

range of each of these 8 primitive variable types are listed below.

byte = 8-bit signed integer, ‒128 ... 127

short = 16-bit signed integer, ‒32,768 ... 32,767

int = 32-bit signed integer, ‒2,147,483,648 ... 2,147,483,647

long = 64-bit signed integer, ‒9,223,372,036,854,775,808 ... 9,223,372,036,854,775,807

float = 32-bit single precision floating point number,

 ±3.40282347 x 10
38

 ... ±1.40239846 x 10
‒45

double = 64-bit double precision floating point number,

 ±1.7976931348623157 x 10
308

 ... ±4.9406564584124654 x 10
‒324

char = 16-bit Unicode character, 0 ... 65,535

boolean = true or false

Variables of type short and float are not required for the IB Computer Science exam.

Numerical values of type long have to end in L or l , and numerical values of type float have to end in

F or f . Numerical values of type double may end in D or d , this rule is optional. Numbers in scientific

notation are written using E or e, which stands for a power of 10. For example 3.4E5 stands for 3.4×10
5
.

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

 13

Characters can be entered between single quotes ('a'), using the Unicode value in hexadecimal form

('\u0066'), or as a special escape sequence ('\b' = backspace, '\n' = newline, '\t' = tab, '\r' = carriage

return, '\f' = form feed, '\\' = backslash, '\'' = single quote, '\"' = double quote).

The next program, Java Example 2, demonstrates the use of all the Java primitive variable types.

// Java Example 2

public class Main

{

 public static void main(String[] args)

 {

 byte b = 100;

 System.out.println("b = " + b);

 short i = 3000;

 System.out.println("i = " + i);

 int j = 40000;

 System.out.println("j = " + j);

 long k = 5000000000L;

 System.out.println("k = " + k);

 float x = 3.1416F;

 System.out.println("x = " + x);

 double y = 7.8E200;

 System.out.println("y = " + y);

 char c = 'a';

 System.out.println("c = " + c);

 boolean a = true;

 System.out.println("a = " + a);

 }

}

The Java programming language, unlike more powerful programming languages like C and C++, does

not have user defined variable types. For this reason, for example, Java is not a good choice when we

need to perform intensive computations involving complex (imaginary) numbers.

In Java text strings are not variables, but objects of type String. Think of an object of type String as a

primitive variable of type text string packaged together with some functions that act on text strings.

A historical note: Objects have become an important part of the C++ programming language when the

Windows operating system has replaced MS DOS. All the windows of the applications running under

Windows are objects. These objects share the same kind of primitive variables (for example, the x and

y pixel coordinates of the corners of the rectangular shape) and the same kind of functions (for

example, what to do when the user clicks with the mouse on the Minimize, Restore, and Close buttons.

However, because text strings are used very often, in Java the declaration, assignment, and initialization

of String objects is simplified, and it looks just like the declaration, assignment, and initialization of

primitive variables. In a text string the information is entered between double quotation marks.

Please also notice that in Java the plus symbol can be used as a concatenation operator for String

objects, merging (combining, adding) two or more text strings together into just one text string.

Example: "abc" + "def" = "abcdef"

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

14

The next program, Java Example 3, shows how to print "Hello World!" using text strings.

// Java Example 3

public class Main

{

 public static void main(String[] args)

 {

 String word1; // a declaration statement

 word1 = "Hello"; // an assignment statement

 String word2 = "World"; // an initialization statement

 System.out.println(word1 + " " + word2 + "!");

 }

}

A variable in a computer program that is assigned a value only once, being initialized at compile time, is

called a constant. In Java constants are declared using the final keyword. This will prevent an

accidental change of the value of the constant. Most often the static keyword is also used, to make the

constant available inside the program even without an instantiated (created) object.

Warning! Please note that in Java a static function, like the static void main() function, can only

access static methods, variables, or constants from the outside of the respective function.

The next program, Java Example 4, uses an int constant named SOS that has a value of 505 .

// Java Example 4

public class Main

{

 static final int SOS = 505;

 public static void main(String[] args)

 {

 System.out.println("SOS = " + SOS);

 }

}

Java has some naming conventions that you should follow.

The names of variables, methods, and objects are written without underscores, starting with a lower case

letter. Separation between more words is done with upper case letters.

Examples: i , age , maxSpeed , numberOfPeople , main() , myBook , getName()

The names of classes are written without underscores, starting with an upper case letter. Separation

between more words is done with upper case letters.

Examples: String , Random , Book , ImageSprite , ChessBoard

The names of constants are written with underscores, using only upper case letters.

Examples: X , LENGTH , MAX_HEIGHT , NUMBER_OF_PIXELS

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

 15

4. Data input from the keyboard with the Scanner and IBIO classes

You have learned that a Java program can output data (to the computer monitor) using the

System.out.println() method. But how can a Java program input data (from the computer keyboard)?

One way to do this is with the help of the Scanner class.

The next program, Java Example 5, is similar to Java Example 2, but this time all the values of the

primitive variables are read from the keyboard, instead of being given inside the code.

// Java Example 5

import java.util.Scanner;

public class Main

{

 public static void main(String[] args)

 {

 Scanner kbdInput = new Scanner(System.in);

 System.out.print("byte b = ? "); // input : 100

 byte b = kbdInput.nextByte();

 System.out.println("b = " + b);

 System.out.print("short i = ? "); // input : 3000

 short i = kbdInput.nextShort();

 System.out.println("i = " + i);

 System.out.print("int j = ? "); // input : 40000

 int j = kbdInput.nextInt();

 System.out.println("j = " + j);

 System.out.print("long k = ? "); // input : 5000000000

 long k = kbdInput.nextLong();

 System.out.println("k = " + k);

 System.out.print("float x = ? "); // input : 3.1416

 float x = kbdInput.nextFloat();

 System.out.println("x = " + x);

 System.out.print("double y = ? "); // input : 7.8E200

 double y = kbdInput.nextDouble();

 System.out.println("y = " + y);

 System.out.print("char c = ? "); // input : a

 char c = kbdInput.next().charAt(0);

 System.out.println("c = " + c);

 System.out.print("boolean a = ? "); // input : true

 boolean a = kbdInput.nextBoolean();

 System.out.println("a = " + a);

 }

}

One important thing to notice is the import java.util.Scanner; line, which tells the Java compiler to

look for the definition and the implementation of the Scanner class in the java.util package.

Another thing to notice is the Scanner kbdInput = new Scanner(System.in); line. Here kbdInput is

the name of an object of type (of class) Scanner . The first part of the line holds the declaration of the

kbdInput object of class Scanner . The second part of the line holds the creation (the instantiation) of

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

16

the kbdInput object, which is done with the help of the new keyword and the Scanner(System.in)

method (function) . The Scanner() function, with the same name as the Scanner class, is called the

constructor of this class. System.in is an input parameter, a Java object that identifies the computer

keyboard as the source of the alphanumeric stream of data.

Once the kbdInput object is created (and therefore exists in RAM), we can use some of its methods to

input data. The program demonstrates the use of the nextByte() , nextShort() , nextInt() , nextLong() ,

nextFloat() , nextDouble() , next() , and nextBoolean() methods, which return variables of type byte ,

short , int , long , float , double , an object of type String , and a variable of type boolean . Please

notice how kbdInput , the name of the object, shows up in front of each method, and how the two are

connected by a dot. The object returned by the kbdInput.next() function is of type String , and the

charAt(0) method of the String class selects the first alphanumeric character of a given text string. This

character is what the kbdInput.next().charAt(0) expression returns as a value.

What happens if instead of typing 100<ENTER> you type 100 3000<ENTER> ? This shows that

everything you type on the computer keyboard is saved in a buffer, which is a dedicated memory space.

This keyboard input buffer is then checked by the methods of the Scanner class.

What happens if instead of typing 100<ENTER> you type z<ENTER> ? There are ways to prevent the

program from crashing due to invalid input. The Scanner class has methods that verify the type of the

alphanumeric input received. Nonetheless, in order to keep the Java programs short and simple, we will

assume that the users know what they are supposed to do, and that they always input some valid

information.

The next program, Java Example 6, uses the Scanner class to read a text string (a word) from the

keyboard. The word consists of all the alphanumeric characters that show up in the typed text string

before the special delimiter character (usually the empty space character) or before the end of the text

string, signaled by <ENTER> . The program demonstrates the use of the next() method, which returns

an object of type String .

// Java Example 6

import java.util.Scanner;

public class Main

{

 public static void main(String[] args)

 {

 Scanner kbdInput = new Scanner(System.in);

 System.out.print("String word = ? "); // input : Happy New Year!

 String word = kbdInput.next();

 System.out.println("word = " + word); // output : Happy

 }

}

What happens if you try to enter an empty text string, or an empty space?

The next program, Java Example 7, uses the Scanner class to read a text string (a sentence) from the

keyboard. The sentence consists of all the alphanumeric characters that show up in the typed text string

before the end of the text string, signaled by <ENTER>. The program demonstrates the use of the

nextLine() method, which returns an object of type String .

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

 17

// Java Example 7

import java.util.Scanner;

public class Main

{

 public static void main(String[] args)

 {

 Scanner kbdInput = new Scanner(System.in);

 System.out.print("String sentence = ? "); // input : Happy Chinese New Year!

 String sentence = kbdInput.nextLine();

 System.out.println("sentence = " + sentence); // output : Happy Chinese New Year!

 }

}

What happens if you try to enter an empty text string, or an empty space?

There is an alternative to the Scanner class, this is the IBIO class. The IBIO class was created by the

International Baccalaureate computer science experts in order to assist with data input and output

operations. The next program, Java Example 8, shows how to use the IBIO class.

Go to https://www.onlinegdb.com/ . Start the online Java compiler, and click on the New File button.

Give the new file the name IBIO.java . Copy and paste inside the new file all the content of the

IBIO.java file, which you may find at

https://stackoverflow.com/questions/29000103/java-code-for-guessing-game-not-printing-anything

// Java Example 8

public class Main

{

 public static void main(String[] args)

 {

 byte b = IBIO.inputByte("byte b = ? "); // input : 100

 IBIO.output("b = " + b);

 int j = IBIO.inputInt("int j = ? "); // input : 40000

 IBIO.output("j = " + j);

 long k = IBIO.inputLong("long k = ? "); // input : 5000000000

 IBIO.output("k = " + k);

 double y = IBIO.inputDouble("double y = ? "); // input : 7.8E200

 IBIO.output("y = " + y);

 char c = IBIO.inputChar("char c = ? "); // input : a

 IBIO.output("c = " + c);

 boolean a = IBIO.inputBoolean("boolean a = ? "); // input : true

 IBIO.output("a = " + a);

 String word = IBIO.inputString("String word = ? "); // input : Happy

 IBIO.output("word = " + word);

 }

}

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

18

5. Operators: arithmetic, relational, and logical

5.1. The Java arithmetic operators

The Java arithmetic operators have numbers as input and numbers as output.

The Java arithmetic operators are + , ‒ , * , / , % , ++ , ‒‒ .

+ (addition) Example: 13 + 5 = 18

‒ (subtraction) Example: 13 ‒ 5 = 8

* (multiplication) Example: 13 * 5 = 65

/ (division) Example: 13.0 / 5.0 = 2.6

/ (integer division) Example: 13 / 5 = 2 This is the quotient of an integer division.

% (modulus) Example: 13 % 5 = 3 This is the remainder of an integer division.

++ (increment) Example: 13++ = 14

‒‒ (decrement) Example: 5‒‒ = 4

Warning! It is very easy to make mistakes because x++ (post-increment) is not the same as ++x (pre-

increment), and x‒‒ (post-decrement) is not the same as ‒‒x (pre-decrement).

y = x++; means { y = x; x = x + 1; } , while y = ++x means { x = x + 1; y = x; } .

y = x‒‒; means { y = x; x = x ‒ 1; } , while y = ‒‒x means { x = x ‒ 1; y = x; } .

IB CS requirement: Use x = x + 1 instead of x++ or ++x , and x = x ‒ 1 instead of x‒‒ or ‒‒x .

The next program, Java Example 9, demonstrates how to do some simple arithmetic calculations.

// Java Example 9

public class Main

{

 public static void main(String[] args)

 {

 int i = 13;

 int j = 5;

 double x = 13.0;

 double y = 5.0;

 System.out.println(i + j); // output : 18

 System.out.println(i - j); // output : 8

 System.out.println(i * j); // output : 65

 System.out.println(x / y); // output : 2.6

 System.out.println(i / j); // output : 2

 System.out.println(i % j); // output : 3

 System.out.println(i / y); // output : 2.6

 }

}

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

 19

5.2. The Java relational operators

The Java relational operators have numbers as input and boolean values as output.

The Java relational operators are == , != , < , > , <= , >= .

== (is equal to) Example: 13 == 5 is false .

!= (is not equal to) Example: 13 != 5 is true .

< (is less than) Example: 13 < 5 is false .

> (is greater than) Example: 13 > 5 is true .

<= (is less than or equal to) Example: 13 <= 5 is false .

>= (is greater than or equal to) Example: 13 >= 5 is true .

The Java relational operators return a result (of type boolean) that can only be true or false.

Warning! Be careful when you read out loud expressions with relational operators. "Five is less than

thirteen" means 5 < 13, but "five less than thirteen" means 13 ‒ 5.

The next program, Java Example 10, evaluates some boolean expressions (logical statements that can

only be true or false) that use relational operators.

// Java Example 10

public class Main

{

 public static void main(String[] args)

 {

 int i = 13;

 int j = 5;

 System.out.println(i == j); // output : false

 System.out.println(i != j); // output : true

 System.out.println(i < j); // output : false

 System.out.println(i > j); // output : true

 System.out.println(i <= j); // output : false

 System.out.println(i >= j); // output : true

 }

}

5.3. The Java logical operators

The Java logical operators have boolean values as input and boolean values as output.

The Java logical operators are && , || , ! .

&& (AND) Example: (13 < 5) && (13 > 5) is false because false AND true is false .

|| (OR) Example: (13 < 5) || (13 > 5) is true because false OR true is true .

! (NOT) Example: !(13 < 5) is true because NOT false is true .

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

20

The Java logical operators return a result (of type boolean) that can only be true or false.

Warning! It is important to realize that the logical operators, just like the arithmetic operators, are

evaluated according to a predetermined order of operations: NOT is evaluated first, AND is evaluated

next, and OR is evaluated last.

Since using the order of operations for logical operators is not something very intuitive to humans, it is

good programming practice to use parentheses in order to clarify the meaning of more complex boolean

expressions. For example,

write X = [(NOT A) AND B] OR [A AND (NOT B)] (in Java: x = ((!A) && B) || (A && (!B));)

instead of X = NOT A AND B OR A AND NOT B (in Java: x = !A && B || A && !B;)

even though, from the computer's perspective, it is the same thing.

The next program, Java Example 11, evaluates some simple boolean expressions (logical statements

that can only be true or false) that use logical operators.

// Java Example 11

public class Main

{

 public static void main(String[] args)

 {

 boolean a = false;

 boolean b = true;

 System.out.println(a && b); // output : false

 System.out.println(a || b); // output : true

 System.out.println(!a); // output : true

 }

}

The input-output tables below give the boolean values of all the simple boolean expressions with logical

operators. These tables have to be memorized. One way to memorize these tables is to think of false as

0, to think of true as 1 (or 2), to think of AND as multiplication, and to think of OR as addition.

Java has more operators (bitwise operators, assignment operators, etc.) but they are not required for the

IB Computer Science exam. For a list of all the Java operators and their order of operations, please go

to: https://introcs.cs.princeton.edu/java/11precedence/

X Y X AND Y

false false false

false true false

true false false

true true true

X Y X OR Y

false false false

false true true

true false true

true true true

X NOT X

false true

true false

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

 21

6. Control flow: conditional statements

All the Java programs given as examples until now (Java examples from 1 to 11) have a very simple

structure. During execution the program starts at the first instruction line of the main() function, and

then executes in a sequence all the instruction lines of the main() function. After executing the last

instruction line of the main() function, the program stops. Most computer programs need more

flexibility, they need to execute or skip different segments of code depending on various conditions. To

implement such a behavior the Java language has the if , else , switch , and break keywords.

For simplicity, the conditions tested in the next Java examples will be based on random numbers. We

will use int i = (int) (6*Math.random() + 1); to simulate the roll of a die. This is an integer expression

that returns 1, 2, 3, 4, 5, or 6. There is more information about random numbers in Chapter 16.

6.1. The IF structure

The simplest if structure is this:

if (conditionA) instructionA;

The instructionA instruction will be executed only when the conditionA condition is true . Otherwise

the program simply goes to the next instruction after the if structure. Although not mandatory, the

instructionA instruction could be placed inside curly braces. This is good programming practice,

helping the readability and the future maintenance of your code.

if (conditionA) { instructionA; }

The curly braces become mandatory when more than one instruction have to be executed, as a block of

instructions, when the conditionA condition is true.

if (conditionA) { instructionA1; instructionA2; instructionA3; }

The flowchart of the if structure is this:

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

22

The next program, Java Example 12, prints "WINNER!" whenever the integer random number i

happens to be 6. The program doesn't print "WINNER!" otherwise. Please notice that the round brackets

() around the i == 6 tested condition are mandatory.

// Java Example 12

public class Main

{

 public static void main(String[] args)

 {

 int i = (int) (6*Math.random() + 1); // roll of the die

 System.out.println("i = " + i); // the statement before IF

 if (i == 6)

 {

 System.out.println("WINNER!");

 }

 System.out.println("i = " + i); // the statement after IF

 }

}

6.2. The IF-ELSE structure

What do we do when the program is supposed to do something when the tested condition is true , and

something else when the tested condition is false ? We could write something like this:

if (conditionA) instructionA;

if (NOT conditionA) instructionB;

but that would be wasteful, since the same condition is tested twice. We know that NOT conditionA is

false when conditionA is true, and we know that NOT conditionA is true when conditionA is false .

To avoid this waste of computing resources, and to test the boolean condition only once, we implement

the if-else structure, which looks like this:

if (conditionA) instructionA;

else instructionB;

or like this (with optional curly braces for single instructions):

if (conditionA) { instructionA; }

else { instructionB; }

or like this (with mandatory curly braces for blocks of instructions):

if (conditionA) { instructionA1; instructionA2; instructionA3; }

else { instructionB1; instructionB2; instructionB3; }

We could also have a mix, with a single instruction paired up with a block of instructions, like this:

if (conditionA) instructionA;

else { instructionB1; instructionB2; instructionB3; }

or with a block of instructions paired up with a single instruction, like this:

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

 23

if (conditionA) { instructionA1; instructionA2; instructionA3; }

else instructionB;

The flowchart of the if-else structure is this:

The next program, Java Example 13, finds if the integer random number i is odd or even, and then

prints this information. When is a number even? When the remainder of an integer division by 2 is 0.

// Java Example 13

public class Main

{

 public static void main(String[] args)

 {

 int i = (int) (6*Math.random() + 1); // roll of the die

 System.out.println("i = " + i); // the statement before IF-ELSE

 if (i%2 == 0)

 {

 System.out.println("even number");

 }

 else

 {

 System.out.println("odd number");

 }

 System.out.println("i = " + i); // the statement after IF-ELSE

 }

}

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

24

More complex situations, when there are more than 2 possible outcomes, require more complex if

structures. Please notice that in the above flowcharts the two instruction blocks instructionA and

instructionB can themselves be made from other if or if-else structures.

The next program, Java Example 14, finds if the integer random number i is in the lower third (1 or 2),

in the middle third (3 or 4), or in the upper third (5 and 6), and then prints this information.

// Java Example 14

public class Main

{

 public static void main(String[] args)

 {

 int i = (int) (6*Math.random() + 1); // roll of the die

 System.out.println("i = " + i); // the statement before IF-ELSE-IF-ELSE

 if (i <= 2)

 {

 System.out.println("lower third");

 }

 else if (i <= 4)

 {

 System.out.println("middle third");

 }

 else

 {

 System.out.println("upper third");

 }

 System.out.println("i = " + i); // the statement after IF-ELSE-IF-ELSE

 }

}

Notice that the if-else-if-else structure used above is very efficient. Only two inequalities are tested by

the program. A less efficient alternative is to use three simple if structures, but then four inequalities are

tested, as shown below.

if (i <= 2) System.out.println("lower third");

if (i > 2 && i < 5) System.out.println("middle third");

if (i >= 5) System.out.println("upper third");

As expected, two of these four inequalities are not independent, since !(i <= 2) is the same as i > 2 ,

and !(i >= 5) is the same as i < 5 .

What do we do if we want the program to spell in words the value of the random number? We could use

six simple if statements, as shown below:

if (i == 1) System.out.println("one");

if (i == 2) System.out.println("two");

if (i == 3) System.out.println("three");

if (i == 4) System.out.println("four");

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

 25

if (i == 5) System.out.println("five");

if (i == 6) System.out.println("six");

This program is very inefficient because it will test all six equalities every time, for any integer random

number i . Often the testing will continue even after the correct message has been printed. This is

wasteful, because another true condition will never be found again. A better option is to use a very long

if-else-if-else-if-else-if-else-if-else structure, as shown below:

if (i == 1) System.out.println("one");

else if (i == 2) System.out.println("two");

else if (i == 3) System.out.println("three");

else if (i == 4) System.out.println("four");

else if (i == 5) System.out.println("five");

else System.out.println("six");

The above program is more efficient. Once a match is found, the message is printed and the remaining

equalities are no longer checked. Also, there is no need to check for i == 6 , because at this point in the

program there is no other available option for the value of the integer random number i .

6.3. The SWITCH structure

Another option is to use a switch(i) statement, as shown in Java Example 15.

// Java Example 15

public class Main

{

 public static void main(String[] args)

 {

 int i = (int) (6*Math.random() + 1); // roll of the die

 System.out.println("i = " + i); // the statement before SWITCH

 switch(i)

 {

 case 1 : System.out.println("one");

 break;

 case 2 : System.out.println("two");

 break;

 case 3 : System.out.println("three");

 break;

 case 4 : System.out.println("four");

 break;

 case 5 : System.out.println("five");

 break;

 default : System.out.println("six");

 }

 System.out.println("i = " + i); // the statement after SWITCH

 }

}

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

26

The switch(i) instruction works like a go to case i instruction, available in other programming

languages. There is no go to instruction in Java.

The default case is executed when no good match is found. The default case is optional. In our Java

program we could replace the default case with case 6 : System.out.println("six"); and the program

would perform exactly in the same way.

The break statements force the program to exit the switch structure, and in this way the computer will

continue with the next instruction after the switch structure. The break statements are optional, but if

they are not included then the program will not exit the switch structure until the last case (or the

default case if present) is executed.

The next program, Java Example 16, shows what happens when there are no break statements inside a

switch structure.

// Java Example 16

public class Main

{

 public static void main(String[] args)

 {

 int i = (int) (6*Math.random() + 1); // roll of the die

 System.out.println("i = " + i); // the statement before SWITCH

 switch(i)

 {

 case 1 : System.out.println("one");

 case 2 : System.out.println("two");

 case 3 : System.out.println("three");

 case 4 : System.out.println("four");

 case 5 : System.out.println("five");

 case 6 : System.out.println("six");

 }

 System.out.println("i = " + i); // the statement after SWITCH

 }

}

Run the program a few times. Is this the desired behavior, or a programming mistake? Can you draw the

correct conclusion if you run the program only once, and the integer random number i happens to be 6 ?

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

 27

7. Control flow: loops

The flow of control (the control flow) in a program can be sequential (the computer executes one line

of code after another, in a sequence), or based on selection (the computer chooses a path or another,

depending on some conditional if , if-else , or switch statements), or based on repetition (the computer

repeats the instructions inside a loop of code). The loops of code can be controlled by counters (in the

case of for loops) or by events (in the case of while and do ... while loops). To implement repetitive

structures the Java language has the for , while , do, continue , and break keywords.

7.1. The FOR loop

The structure of a for loop is this:

for(initialize_the_counter ; loop_condition ; change_the_counter) { instructions; }

The counter is an integer variable that often exists only for the duration of the loop. The

initialize_the_counter instruction sets the initial value of the counter. When the loop_condition

becomes false the repetition ends, the computer exits the loop, and the next instruction after the for loop

structure is executed. The change_the_counter instruction is usually an increment (addition of 1) or

decrement (subtraction of 1) operation. The loop_condition must be related to the value of the counter.

For only one instruction the curly braces are optional, but still recommended as good programming

practice. Two or more instructions have to be written inside curly braces. We can also have nested for

loops, when one of the instructions is itself a for loop structure.

The next program, Java Example 17, finds the sum of the integer numbers from 1 to 10. Please notice

how the sum variable is declared and initialized outside of the for loop structure.

// Java Example 17

public class Main

{

 public static void main(String[] args)

 {

 int sum = 0;

 for(int i = 1; i <= 10; i = i + 1)

 {

 System.out.println("i = " + i);

 sum = sum + i;

 }

 System.out.println("1 + 2 + ... + 10 = " + sum);

 }

}

Sometimes the program needs to get out of a loop before the loop condition becomes false . Java does

not have a go to instruction, like the C programming language, but we can use a break statement in

order to exit the for loop and go to the next instruction in the program, the first instruction after the for

loop structure.

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

28

The next program, Java Example 18, finds the sum of the integer numbers from 1 to 6. This program

looks exactly like Java Example 17, with one exception: the if(i == 7) break; statement forces the

program to stop the addition after the first 6 numbers, when the i == 7 condition becomes true .

// Java Example 18

public class Main

{

 public static void main(String[] args)

 {

 int sum = 0;

 for(int i = 1; i <= 10; i = i + 1)

 {

 if(i == 7) break;

 System.out.println("i = " + i);

 sum = sum + i;

 }

 System.out.println("1 + 2 + ... + 6 = " + sum);

 }

}

Another useful instruction is the continue statement. This tells the computer to immediately go to the

beginning of the for loop structure, change the counter, and, in case of a true loop condition, proceed

with the first instruction in the loop of code.

The next program, Java Example 19, finds the sum of the integer numbers from 1 to 10, skipping 7.

This program looks exactly like Java Example 17, with one exception: the if(i == 7) continue;

statement forces the program to skip the addition of number 7.

// Java Example 19

public class Main

{

 public static void main(String[] args)

 {

 int sum = 0;

 for(int i = 1; i <= 10; i = i + 1)

 {

 if(i == 7) continue;

 System.out.println("i = " + i);

 sum = sum + i;

 }

 System.out.println("1 + 2 + ... + 10 - 7 = " + sum);

 }

}

The next program, Java Example 20, uses nested loops in order to print all the numbers from 0 to 99.

The one hundred numbers are printed on ten rows of ten numbers each. For each of the i values (in the

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

 29

outer for loop) the program executes the instructions for all of the j values (in the inner for loop). A

nested for loop structure like this one is often used when working with two-dimensional arrays.

// Java Example 20

public class Main

{

 public static void main(String[] args)

 {

 for(int i = 0; i <= 9; i = i + 1)

 {

 for(int j = 0; j <= 9; j = j + 1)

 {

 System.out.print(i + "" + j + " ");

 }

 System.out.println(""); // new line

 }

 }

}

7.2. The WHILE and the DO...WHILE loops

In some situations we don't know exactly how many times the loop of code has to be repeated. For

example, a program reads lines of text from a text file, without knowing how many lines of text the

actual text file has. For such situations we can use while or do ... while loops. The loop condition, for

these loops, may or may not be related to a counter.

The structure of a while loop is this:

while(loop_condition) { instructions; }

The structure of a do ... while loop is this:

do { instructions; } while(loop_condition);

The while loop checks the loop condition before the execution of the code. In some situations the code

inside the while loop is never executed. The do .. while loop checks the loop condition after the

execution of the code. The code inside the do .. while loop is always executed at least once.

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

30

When there is only one instruction inside the loop, the curly braces are optional. Otherwise the curly

braces are mandatory. Please notice the semicolon ; at the end of the do ... while structure.

The next program, Java Example 21, finds the sum of the integer numbers from 1 to 10 with the help of

a while loop.

// Java Example 21

public class Main

{

 public static void main(String[] args)

 {

 int sum = 0;

 int i = 1; // initialize the counter

 while(i <= 10) // check the loop condition

 {

 System.out.println("i = " + i);

 sum = sum + i;

 i = i + 1; // change the counter

 }

 System.out.println("1 + 2 + ... + 10 = " + sum);

 }

}

The next program, Java Example 22, finds the sum of the integer numbers from 1 to 10 with the help of

a do ... while loop.

// Java Example 22

public class Main

{

 public static void main(String[] args)

 {

 int sum = 0;

 int i = 1; // initialize the counter

 do

 {

 System.out.println("i = " + i);

 sum = sum + i;

 i = i + 1; // change the counter

 } while(i <= 10); // check the loop condition

 System.out.println("1 + 2 + ... + 10 = " + sum);

 }

}

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

 31

But beware of the infinite loop! For example, in Java

Examples 21 and 22, if the programmer forgets to write

the i = i + 1; line that changes the counter, the loop

condition will always be true, the code inside the loop

will be repeated forever, and the program will get stuck

in place. As a general rule, inside while and do ... while

loops we must always have a line of code that,

eventually, will change the boolean value of the loop

condition to false .

The next program, Java Example 23, demonstrates a

while loop without a counter. The program prints integer

random numbers, until we get a 6. The last number, the 6,

is not printed. Please notice that we have to roll the die

inside the while loop, but also before it, once.

// Java Example 23

public class Main

{

 public static void main(String[] args)

 {

 int i = (int) (6*Math.random() + 1); // roll of the die

 while(i != 6) // check the loop condition

 {

 System.out.println("i = " + i);

 i = (int) (6*Math.random() + 1); // change the value of the loop condition

 }

 }

}

The next program, Java Example 24, demonstrates a do ... while loop without a counter. The program

prints integer random numbers, until we get a 6. The last number, the 6, is also printed.

// Java Example 24

public class Main

{

 public static void main(String[] args)

 {

 int i;

 do

 {

 i = (int) (6*Math.random() + 1); // change the value of the loop condition

 System.out.println("i = " + i);

 } while(i != 6); // check the loop condition

 }

}

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

32

8. Functions: input and output values, formal and actual parameters

Remember that in mathematics a function f is something that has a set of input values (the domain of

the function, the set of all possible x values), a set of output values (the range of the function, the set of

all possible y values), and a relationship y = f(x) that provides a unique output value y for every input

value x. In computer programming functions work in the same way, with the mention that sometimes a

function may not have an input value, or an output value, or both. In Java functions are called methods.

The main() method used so far has an array of text strings (String[] args) as the input value, and

nothing (void) as the output value. Notice how, in the declaration of a function, the return type (the

variable type of the output value) is written in front of the name of that function, while the names and

variable types of the input parameters are written in round brackets after the name of that function.

The next program, Java Example 25, demonstrates how to print "Hello World!" using a function named

printGreeting() that has no input parameters (empty round brackets ()) and no output value (void).

// Java Example 25

public class Main

{

 public static void main(String[] args)

 {

 printGreeting();

 }

 static void printGreeting()

 {

 System.out.println("Hello World!");

 }

}

The next program, Java Example 26, demonstrates how to print "Hello World!" using a function named

printGreeting() that has one input parameter (an object of type String) and no output value (void).

// Java Example 26

public class Main

{

 public static void main(String[] args)

 {

 String greeting = "Hello World!";

 printGreeting(greeting);

 }

 static void printGreeting(String text)

 {

 System.out.println(text);

 }

}

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

 33

The object named text that shows up in the definition of the printGreeting() function is called a formal

parameter (a formal argument). The object named greeting that shows up in the function call of

printGreeting() is called an actual parameter (an actual argument). During the execution of the

printGreeting() function, the value of greeting (the actual parameter) is assigned to text (the formal

parameter) inside the body of the printGreeting() function. It is possible to give both the formal

parameter and the actual parameter the same name, since these two "variables" (text string objects of

class String) exist in different places (inside the body of different functions). The greeting object (the

actual parameter) exists only inside the body of the main() function, while the text object (the formal

parameter) exists only inside the body of the printGreeting() function.

The next program, Java Example 27, demonstrates how to print "Hello World!" using a function named

greeting() that has no input parameters and an output value of type String . The output value of the

function is given using the return keyword. When the program reaches a return statement it exits the

body of the function, and returns the function's output value to the instruction that has called that

function. At that place, inside the text = greeting(); line, the greeting() function to the right of the

equal sign is in effect replaced by "Hello World!", the returned output value.

// Java Example 27

public class Main

{

 public static void main(String[] args)

 {

 String text;

 text = greeting();

 System.out.println(text);

 }

 static String greeting()

 {

 return "Hello World!";

 }

}

The next program, Java Example 28, demonstrates the use of a function named lazyStudent() (that does

nothing) with an input parameter of type String and an output value also of type String .

// Java Example 28

public class Main

{

 public static void main(String[] args) {

 String x = "Hello World!";

 String y = lazyStudent(x);

 System.out.println(y); }

 static String lazyStudent(String z) {

 return z; }

}

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

34

The next program, Java Example 29, demonstrates how to print "Hello World!" using a function named

printGreeting() that has two input parameters of type String and no output value.

A shorter version of the program could use the System.out.println(text1 + " " + text2 + "!"); line.

// Java Example 29

public class Main

{

 public static void main(String[] args)

 {

 String word1 = "Hello";

 String word2 = "World";

 printGreeting(word1, word2);

 }

 static void printGreeting(String text1, String text2)

 {

 String text = text1 + " " + text2 + "!";

 System.out.println(text);

 }

}

The next program, Java Example 30, demonstrates how to print "Hello World!" using a function named

greeting() that has two input parameters of type String and an output value of type String.

A shorter version of the program could use the two lines System.out.println(greeting(word1, word2));

and return text1 + " " + text2 + "!"; . An even shorter version of the program could use the

System.out.println(greeting("Hello", "World")); line.

// Java Example 30

public class Main

{

 public static void main(String[] args)

 {

 String word1 = "Hello";

 String word2 = "World";

 String sentence = greeting(word1, word2);

 System.out.println(sentence);

 }

 static String greeting(String text1, String text2)

 {

 String text = text1 + " " + text2 + "!";

 return text;

 }

}

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

 35

9. Java objects: methods of the Math, String, and StringBuffer classes

You have already used a method (a function) of the Math class, the random() method that returns a

random number. This is a static method, and does not require the creation of an object. The name of the

Math class is listed in front of the name of the random() static method, the two being connected by a

dot. To call this method we write Math.random() .

You have also used a method of the String class, the charAt() method that returns the character found

at a given location in a text string. This method can be called only after a String object has been created

(instantiated). The name of the String object (for example, text) is listed in front of the name of the

charAt() method, the two being connected by a dot. To call this method, and to find the first character

in the text string named text, we write text.charAt(0) .

9.1. Important methods and constants of the Math class : abs() , pow() , sin() , cos() , round() ,

floor() , random() , PI , E

The abs(x) function returns the absolute value of a number, |x| . The input value can be of type byte ,

short , int , long , float , or double . The output value can be of type int , long , float , or double , of

the same type as the input value.

The pow(x, y) function returns a power, x
y
 . The first input parameter x is the base, and the second input

parameter y is the exponent. The base and the exponent can be of type byte , short , int , long , float ,

or double . The output value is a floating point number of type double .

The sin(x) function returns the sine of angle x, which is given in radians. The input value x is of type

double , and the output value is also of type double .

The cos(x) function returns the cosine of angle x, which is given in radians. The input value x is of type

double , and the output value is also of type double .

The round(x) function rounds up or down a number x to its nearest integer value. When the input value

x is of type float , the output value is of type int . When the input value x is of type double , the output

value is of type long .

The floor(x) function returns the largest integer that is less than or equal to the input parameter x . The

input value x is of type float or double , and the output value is of type double .

Remember, when plotted on a number line, a smaller number is on the left side of a larger number.

The random() function, with no input parameter, returns a pseudorandom number in the [0, 1) range.

The output value is of type double .

Math.PI is number  , a constant of type double .

Math.E is Euler's number, the base of the natural logarithm, a constant of type double .

There are other useful Math methods, not required for the IB Computer Science exam: acos() , asin() ,

atan() , cbrt() , ceil() , cosh() , exp() , log() , max() , min() , signum() , sinh() , sqrt() , tan() , tanh() ,

toDegrees() , toRadians() . For a list of all the methods of the Math class, please go to:

www.tutorialspoint.com/java/lang/java_lang_math.htm

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

36

The next program, Java Example 31, demonstrates the use of some Math class methods.

// Java Example 31

public class Main

{

 public static void main(String[] args)

 {

 System.out.println("pi = " + Math.PI); // output : 3.141592653589793

 System.out.println("e = " + Math.E); // output : 2.718281828459045

 System.out.println("the absolute value of -5 = " + Math.abs(-5)); // output : 5

 System.out.println("5 to the 3rd power = " + Math.pow(5, 3)); // output : 125.0

 double a = Math.PI/6; // an angle of 30 degrees, given in radians

 System.out.println("sin(30 deg) = " + Math.sin(a)); // output : 0.49999999999999994

 System.out.println("cos(30 deg) = " + Math.cos(a)); // output : 0.8660254037844387

 System.out.println("round(7.2) = " + Math.round(7.2)); // output : 7

 System.out.println("round(7.7) = " + Math.round(7.7)); // output : 8

 System.out.println("floor(8.8) = " + Math.floor(8.8)); // output : 8.0

 System.out.println("floor(-8.8) = " + Math.floor(-8.8)); // output : -9.0

 System.out.println("random number = " + Math.random());

 }

}

9.2. Important methods of the String class : equals() , substring() , length() , charAt() , indexOf() ,

compareTo() , toUpperCase() , toLowerCase() , format()

It is very important to realize that, even though the text string associated with a given String class

object is not listed as an input parameter, it is indeed provided to each of these String class methods.

These methods (with the exception of format()) require an instantiated String object. The name of the

instantiated String object goes in front of the name of the String class method, the two being separated

by a dot.

The equals(String text) method compares the text string of the instantiated String object with the text

string of the text object, and returns true when the two text strings are identical, or false otherwise. The

output value is of type boolean.

Warning! When two String objects are compared using the == symbol, it is not the text strings that are

compared, but the addresses in RAM (the references, the pointers) of the two objects. This is also true

for other Java objects, not just objects of the String class.

The substring(int startPos, int endPos) and substring(int startPos) methods return a part of the

original text string (of the instantiated String object). The startPos index gives the position of the first

alphanumeric character of the selected substring, and the endPos index gives the position of the first

character after the selected substring. The index of the first character is 0. The output value is of type

String. When the second argument endPos is missing, the selected substring goes all the way to the end

of the original text string.

The length() method returns the number of alphanumeric characters in the text string (of the instantiated

String object). The output value is of type int.

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

 37

The charAt(i) method returns the character at the position given by index i in the text string (of the

instantiated String object). The index of the first character is 0. The output value is of type char.

The indexOf(String text) method returns the first position where a given character or the text substring

text is found inside the text string of the instantiated String object. If no match is found, the method

returns ‒1. The output value is of type int.

The compareTo(String text) method compares two text strings letter by letter, starting with the first

letter. If the two text strings are identical, the method returns 0. Otherwise, the method returns the

difference of the Unicode values for the first time when the compared alphanumeric characters don't

match. The Unicode value from text is subtracted from the Unicode value from the instantiated String

object. The output value is of type int.

The toUpperCase() method changes all the letters in the instantiated String object to upper case. The

output value is of type String.

The toLowerCase() method changes all the letters in the instantiated String object to lower case. The

output value is of type String.

The format(…) method is a static String class method that returns a formatted text string. Because

it is static , it does not require an instantiated String object, like the other String class methods

presented here. The output value is of type String. This method is not required for the IB CS exam.

The general pattern of a format specifier is %[flags][width][.precision]conversion_character , where

the parameters in square brackets are optional.

The flags used by format() are:

- = left-justify (default is to right-justify)

+ = write a "+" sign in front of positive numerical values

0 = write "0" characters in front of numerical values, for padding

, = use coma as a grouping separator for numerical values greater than one thousand

 = write a " " (space) in front of positive numerical values

The width is the minimum number of alphanumeric characters to be written out.

The precision is the number of decimal places in a floating point number.

The conversion characters used by format() are:

%d = decimal number

%f = floating point number

%c = character (%C for upper case letter)

%s = text string (%S for upper case letters everywhere in the text string)

%h = hashcode (A hashcode is a Java substitute for the hidden RAM address.)

%n = newline (\n can be used as well, with less compatibility)

There are other useful String methods, not required for the IB Computer Science exam: concat() ,

equalsIgnoreCase() , isEmpty() , lastIndexOf() , replace() , replaceAll() , toCharArray() ,

valueOf() . For a list of all the methods of the String class, please go to:

www.tutorialspoint.com/java/java_strings.htm

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

38

The next program, Java Example 32, demonstrates the use of some String class methods.

// Java Example 32

public class Main

{

 public static void main(String[] args)

 {

 String object1 = "pineapple";

 String object2 = "apple";

 System.out.print("comparing " + object1 + " to " + object2 + " : ");

 System.out.println(object1.equals(object2));

 String object3 = object1.substring(2,4);

 System.out.println("substring extracted : " + object3);

 String object4 = object1.substring(4);

 System.out.println("substring extracted : " + object4);

 System.out.print("comparing " + object2 + " to " + object4 + " : ");

 System.out.println(object2.equals(object4));

 System.out.print("comparing the object references : ");

 System.out.println(object2 == object4);

 System.out.println("length of " + object1 + " : " + object1.length());

 System.out.println("first letter of " + object2 + " : " + object2.charAt(0));

 System.out.println("position of pl in " + object2 + " : " + object2.indexOf("pl"));

 System.out.println("position of z in " + object1 + " : " + object1.indexOf('z'));

 System.out.print("comparing " + object1 + " to " + object2 + " : ");

 System.out.println(object1.compareTo(object2));

 System.out.println("subtracting Unicode values : " + ((int) 'p' - (int) 'a'));

 String object5 = object1.toUpperCase();

 System.out.println("converting " + object1 + " to upper case : " + object5);

 String object6 = object5.toLowerCase();

 System.out.println("converting " + object5 + " to lower case : " + object6);

 String object7 = String.format(" %d and %f make %s ", 10, 20.0, "30");

 System.out.println(object7);

 String object8 = String.format("%+10.5f", 3.1415926535);

 System.out.println("pi is " + object8 + " in this approximation");

 }

}

The program also demonstrates the use of the type casting operator (int) . By writing (int) in front of

the characters 'p' and 'a' we force the computer to convert these characters into their Unicode integer

values. The difference of these integer values has to be inside parentheses, because we want the

computer to perform the subtraction first, before the text string concatenation operator "+" changes

the (int) 'p' integer number into a String object. What is the value of (int) 'p' after the conversion into a

text string? Can the subtraction operator "-" be used in between two String objects?

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

 39

9.3. Important methods of the StringBuffer class : equals() , substring() , length() , charAt() ,

indexOf() , compareTo()

The StringBuffer class is more powerful than the String class. It is designed for text strings that

change often. Objects of the String class are said to be immutable, this means that when an old

String object is modified the Java program has to place the new String object into a new location in

RAM, while the old String object, unmodified, keeps its old place in RAM. When StringBuffer objects

are modified they stay in the same place in RAM. This increases the speed of the Java program, and

also reduces the amount of computer memory that is used.

Warning! Unlike an object of the String class, for which there is a shortcut, an object of the

StringBuffer class has to be created using the new keyword and the StringBuffer() constructor.

Notice the different ways in which a String object and a StringBuffer object are instantiated:

String fruit = "banana"; with shortcut and StringBuffer fruit = new StringBuffer("banana"); without.

It is very important to realize that, even though the text string associated with a given StringBuffer

class object is not listed as an input parameter, it is indeed provided to each of these StringBuffer class

methods. These methods require an instantiated StringBuffer object. The name of the instantiated

StringBuffer object goes in front of the name of the StringBuffer class method, the two being

separated by a dot.

The equals(StringBuffer text) method compares the text string of the instantiated StringBuffer object

with the text string of the text object, and returns true when the two text strings are identical, or false

otherwise. The output value is of type boolean.

Warning! Do not use the == symbol to compare the text strings stored in two StringBuffer objects!

The substring(int startPos, int endPos) and substring(int startPos) methods return a part of the

original text string (of the instantiated StringBuffer object). The startPos index gives the position of

the first alphanumeric character of the selected substring, and the endPos index gives the position of the

first character after the selected substring. The index of the first character is 0. The output value is of

type String. Remember, the output value is not of type StringBuffer . When the second argument

endPos is missing, the selected substring goes all the way to the end of the original text string.

The length() method returns the number of alphanumeric characters in the text string (of the instantiated

StringBuffer object). The output value is of type int.

The charAt(i) method returns the character at the position given by index i in the text string (of the

instantiated StringBuffer object). The index of the first character is 0. The output value is of type char.

The indexOf(String text) method returns the first position where a given character or the text substring

text is found inside the text string of the instantiated StringBuffer object. If no match is found, the

method returns ‒1. The output value is of type int.

The compareTo(StringBuffer text) method compares two text strings letter by letter, starting with the

first letter. If the two text strings are identical, the method returns 0. Otherwise, the method returns the

difference of the Unicode values for the first time when the compared alphanumeric characters don't

match. The Unicode value from text is subtracted from the Unicode value from the instantiated

StringBuffer object. The output value is of type int.

There are other useful StringBuffer methods, not required for the IB Computer Science exam:

append() , reverse() , delete() , insert() , replace() . For a list of all the methods of the StringBuffer

class, please go to: www.tutorialspoint.com/java/java_string_buffer.htm

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

40

10. Java objects: introduction to Object-Oriented Programming

10.1. The constructor

A very important method (function) of a Java class is its constructor. The constructor is called every

time an object of a given class is created (instantiated), and space in RAM is reserved for that object

using the new keyword. The constructor has the same name as its class. The constructor is the only

method that does not have an output value type (a return type), not even void . A class may have one or

more constructors. Very often the constructor is used to give initial values to the field variables of the

newly created object. If no constructor is implemented in the program, then Java will use a default

constructor, one that initializes the field variables to their default values (zero, null, etc.).

The next program, Java Example 33, prints the "Hello World!" message using the constructor of a Java

object.

// Java Example 33

public class Main

{

 public static void main(String[] args)

 {

 MyHello greeting;

 greeting = new MyHello();

 }

}

class MyHello

{

 public MyHello() // the constructor

 {

 System.out.println("Hello World!");

 }

}

We notice that in addition to the Main class we also have another class named MyHello. The MyHello

class is not public, since one Java source file can contain only one public class. Remember, the name of

the public class must match the name of the Java source file. We could make the MyHello class public

by writing its Java code in a separate Java source file, if we wanted that. Then the two Java source files

would be part of the same package.

The MyHello class has only one function (method), just like the Main class, but there is one big

difference: the MyHello() function is not static, like the main() function. This means that we cannot

call the MyHello() function until we create (instantiate) an object of type MyHello . The greeting

object, of type MyHello , is declared and created (instantiated) in the main() function. The new

keyword reserves memory in RAM for the newly created object. The address where this object is

located in RAM is held in greeting , which now also serves as an object reference (memory address,

pointer). In other words, greeting is the name of a Java object and at the same time it is the name of a

pointer variable that holds the memory address of that object. The greeting object is initialized with the

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

 41

help of its constructor. The MyHello() constructor has the same name as the MyHello class, and has no

return type of any kind, not even void .

The declaration, instantiation, and initialization of the greeting object could also be done in just one

line: MyHello greeting = new MyHello(); Another option that produces the same "Hello World!"

message on the computer screen is to type just new MyHello(); , but since in this later case we do not

save the memory address where we can find the newly created object, this object will soon disappear

from RAM when Java does the garbage collection.

10.2. Accessing members of a class or object from a different class or object

The next program, Java Example 34, prints the "Hello World!" message using a user defined method of

a Java object. The Java greeting object of the MyHello class has a default constructor, another function

named printGreeting() , and a text string object (a field variable) named myText . The Java program

demonstrates how the variables, functions, and objects of a given instantiated object can be accessed

from another instantiated object or static method. We do this by writing the name of the instantiated

object and a dot in front of the name of the desired variable, function, or object. For example, inside the

body of the main() method, we use the greeting.myText and greeting.printGreeting() expressions.

// Java Example 34

public class Main

{

 public static void main(String[] args)

 {

 MyHello greeting;

 greeting = new MyHello();

 greeting.myText = "Hello World!";

 greeting.printGreeting();

 }

}

class MyHello

{

 String myText;

 public void printGreeting()

 {

 System.out.println(myText);

 }

}

Can we print the same "Hello World!" message without ever instantiating an object of type MyHello ?

Yes, but in this case the myText object and the printGreeting() function of the MyHello class need to

be declared static . The static members of a class exist in only one copy, even if no object of that class

is instantiated.

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

42

The next program, Java Example 35, demonstrates how the static variables, functions, and objects of a

given class can be accessed from another instantiated object or static method. We do this by writing the

name of the class and a dot in front of the name of the desired static variable, function, or object. For

example, inside the body of the main() method, we use the MyHello.myText and

MyHello.printGreeting() expressions.

// Java Example 35

public class Main

{

 public static void main(String[] args)

 {

 MyHello.myText = "Hello World!";

 MyHello.printGreeting();

 }

}

class MyHello

{

 static String myText;

 public static void printGreeting()

 {

 System.out.println(myText);

 }

}

10.3. Encapsulation

In many situations we do not want the static methods of other classes, or the methods of other

instantiated objects, to have direct access to the variables, methods, or objects of a given instantiated

object. In such a situation we use the private keyword in front of those protected variables, methods, or

objects. This is an important Object-Oriented Programming (OOP) feature called encapsulation .

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

 43

The next program, Java Example 36, demonstrates how to use the input parameters of the constructor in

order to initialize the protected (private) field variables of a newly created object. In this example

there is only one such private field variable, the String object named myText .

// Java Example 36

public class Main

{

 public static void main(String[] args)

 {

 MyHello greeting;

 greeting = new MyHello("Hello World!");

 greeting.printGreeting();

 }

}

class MyHello

{

 private String myText;

 public MyHello(String text) // the constructor

 {

 myText = text;

 }

 public void printGreeting()

 {

 System.out.println(myText);

 }

}

Inside the MyHello class we could also refer to the String object myText as this.myText . Inside the

Java program we could write this.myText = text; instead of myText = text; , and we could write

System.out.println(this.myText); instead of System.out.println(myText); , and it would make no

difference. The this keyword stands for the name of the actual object (for instantiated objects), and it is

very useful when we have two variables or objects with the same name, and we need to distinguish

between them. The actual instantiated object, in this Java program, is greeting . In general, one could

create (instantiate) more than just one object of the MyHello class, and then the this keyword will refer

to whatever actual object is being accessed by the Java program.

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

44

In the next program, Java Example 37, inside the body of the myHello() constructor, the myText name

refers to the formal parameter myText (which used to be named text in the Java Example 36 program),

and not to the private String object myText (which now has to be accessed using the this keyword).

// Java Example 37

public class Main

{

 public static void main(String[] args)

 {

 MyHello greeting = new MyHello("Hello World!");

 greeting.printGreeting();

 }

}

class MyHello

{

 private String myText; // the field variable myText is defined

 public MyHello(String myText) // the formal parameter myText is defined

 {

 this.myText = myText;

 }

 public void printGreeting()

 {

 System.out.println(myText);

 }

}

The Java program would not work as intended if, instead of writing this.myText = myText; , we

wrote myText = myText; . This should be obvious, based on logic. Just think about it. How could the

Java compiler figure out that the first time myText stands for the private field variable, while the

second time myText stands for the formal parameter? No way!

Since a formal parameter exists only inside the body of the function where it is defined, we do not have

the same situation inside the printGreeting() function, where myText unambiguously refers to the

private String object myText. Here, inside the printGreeting() function, we could write

System.out.println(this.myText); instead of System.out.println(myText); , and it would make no

difference.

10.4. Method overloading

Method overloading is an Object-Oriented Programing (OOP) feature that allows a class to have two

or more methods with the same name, as long as the methods have different input parameters. The

methods can be distinguished when they have a different number of input parameters, or when they

have input parameters of different types. It is not allowed to have two methods with the same input

parameters, but with different output value types (return types). Method overloading is an example of

compile time polymorphism, because Java decides which one of the methods to use at compile time,

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

 45

based on the number and types of the input parameters. A very common example of method

overloading is when a class has two or more different constructors.

The next program, Java Example 38, demonstrates a Java class with two constructors. The first

constructor, with no input parameters, is called a no-argument constructor . The second constructor,

with an input parameter of type String , is called a parameterized constructor .

// Java Example 38

public class Main

{

 public static void main(String[] args)

 {

 MyHello greeting1, greeting2;

 greeting1 = new MyHello();

 greeting1.printGreeting();

 greeting2 = new MyHello("Hello World!");

 greeting2.printGreeting();

 }

}

class MyHello

{

 private String myText;

 public MyHello() // the first (no-argument) constructor

 {

 myText = "Have a good day!";

 }

 public MyHello(String text) // the second (parameterized) constructor

 {

 myText = text;

 }

 public void printGreeting()

 {

 System.out.println(myText);

 }

}

The Java program will print "Have a good day!" first, because the first object is created (instantiated)

using the first (no-argument) constructor, and then it will print "Hello World!", because the second

object is created (instantiated) using the second (parameterized) constructor.

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

46

The next program, Java Example 39, also demonstrates a Java class with two constructors. In this

example the ConstructorExample class has two field variables, one String object named name and

one int variable named age, that are not private. As a consequence, these two field variables can be

accessed directly from the main() method of the Main class.

// Java Example 39

public class Main

{

 public static void main(String[] args)

 {

 ConstructorExample o1 = new ConstructorExample();

 ConstructorExample o2 = new ConstructorExample("Ken", 21);

 System.out.println("My name is " + o1.name + " and my age is " + o1.age + ".");

 System.out.println("My name is " + o2.name + " and my age is " + o2.age + ".");

 }

}

class ConstructorExample

{

 String name;

 int age;

 ConstructorExample()

 {

 name = "Barbie";

 age = 18;

 }

 ConstructorExample(String n, int a)

 {

 name = n;

 age = a;

 }

}

The Java program will print "My name is

Barbie and my age is 18." first, because the

first object o1 is created (instantiated) using

the first (no-argument) constructor, and then

it will print "My name is Ken and my age is

21.", because the second object o2 is created

(instantiated) using the second

(parameterized) constructor.

Warning! Never take for granted the age that is self-reported by a Ken or a Barbie! Especially if this

information comes from a computer (or cellphone) screen, without previous direct visual contact

between the involved parties. Never take for granted even the name that is self-reported by a person that

you have never met face-to-face before.

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

 47

11. Variables: instance variables and static variables

We have used a static String object earlier, in Java Example 35. Static field variables exist in only one

copy. Now, in order to better understand the behavior of static variables inside their objects, we show a

program, Java Example 40, in which three objects are instantiated. These three objects (obj1 , obj2 ,

and obj3) share the same static int variable named myStaticVar. Changing this variable in any one of

the three objects will change it in all three objects. The name of an instantiated object is not even

needed, we can access the static variable using the name of the class instead, which in this case is

StaticVarExample. To access a variable means to be able to find (read) and change (write) its value.

// Java Example 40

public class Main

{

 public static void main(String[] args)

 {

 StaticVarExample obj1 = new StaticVarExample();

 StaticVarExample obj2 = new StaticVarExample();

 StaticVarExample obj3 = new StaticVarExample();

 System.out.println(obj1.myStaticVar); // output : 123

 System.out.println(obj2.myStaticVar); // output : 123

 System.out.println(obj3.myStaticVar); // output : 123

 System.out.println(""); // new line

 // change the value of the static variable in object obj2

 obj2.myStaticVar = 505;

 System.out.println(obj1.myStaticVar); // output : 505

 System.out.println(obj2.myStaticVar); // output : 505

 System.out.println(obj3.myStaticVar); // output : 505

 System.out.println(""); // new line

 // the name of an instantiated object is not even needed

 StaticVarExample.myStaticVar = 456;

 System.out.println(StaticVarExample.myStaticVar); // output : 456

 }

}

class StaticVarExample

{

 public static int myStaticVar = 123;

}

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

48

Field variables that are not static are called instance variables. When a field variable is not static ,

each created (instantiated) object will have its own copy of that instance variable. The instance variables

are independent of each other, and they can be accessed only by using the name of the instantiated

object they belong to, followed by a dot. Trying to access an instance variable by using the name of the

class will produce a compiler error.

The next program, Java Example 41, is similar to Java Example 40, with one important difference: the

int variable named myInstanceVar of the InstanceVarExample class is not static . As a result,

changing the value of this integer variable in the obj2 object will not modify its value in the obj1 and

obj3 objects.

// Java Example 41

public class Main

{

 public static void main(String[] args)

 {

 InstanceVarExample obj1 = new InstanceVarExample();

 InstanceVarExample obj2 = new InstanceVarExample();

 InstanceVarExample obj3 = new InstanceVarExample();

 System.out.println(obj1.myInstanceVar); // output : 123

 System.out.println(obj2.myInstanceVar); // output : 123

 System.out.println(obj3.myInstanceVar); // output : 123

 System.out.println(""); // new line

 // change the value of the static variable in object obj2

 obj2.myInstanceVar = 505;

 System.out.println(obj1.myInstanceVar); // output : 123

 System.out.println(obj2.myInstanceVar); // output : 505

 System.out.println(obj3.myInstanceVar); // output : 123

 }

}

class InstanceVarExample

{

 public int myInstanceVar = 123;

}

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

 49

12. Java objects: 1D and 2D arrays

In Java one dimensional (1D) arrays are objects that hold a given number of elements of the same type,

stored in memory in a sequential order. These elements can be variables of a primitive type, or objects

of a given class. First an array has to be declared. In this way the Java compiler gets to know the name

of the array and the data type of the array elements. Then the array has to be instantiated. At this step

the Java compiler reserves space in RAM for the array, and gives the array elements their default values

(zero, null, etc.). After these two steps the array elements can be reassigned new values. The elements of

the array are identified with the help of an index, an integer counter that starts from zero, like this:

array_name[index]

Warning! The fact that in Java the array index starts at zero can be a little confusing, especially since in

mathematics and in some other programming languages (for example in Pascal) the array index starts at

one. For the same reason the index of the last element in a Java array with n elements is not n, but n‒1.

The declaration of an array can be done in two equivalent ways:

data_type[] array_name;

data_type array_name[];

the first method being the preferred one.

The instantiation of an array is done in this way:

array_name = new data_type[size];

where the size of the array is the number of elements stored in the array.

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

50

The declaration and instantiation statements can be combined into just one:

data_type[] array_name = new data_type[size];

Java arrays have one very important field variable (property) called length . This is an integer variable

that holds the size of the array, which is the number of elements stored in the array.

The next program, Java Example 42, demonstrates the use of an array of integer elements.

// Java Example 42

public class Main

{

 public static void main (String[] args)

 {

 int[] pi_digits; // declaration

 pi_digits = new int[5]; // instantiation

 pi_digits[0] = 3; // initialization

 pi_digits[1] = 1;

 pi_digits[2] = 4;

 pi_digits[3] = 1;

 pi_digits[4] = 6;

 System.out.println ("The array has " + pi_digits.length + " elements.");

 System.out.print("pi = " + pi_digits[0] + ".");

 for(int i=1; i<=4; i=i+1) System.out.print(pi_digits[i]);

 }

}

If, at the moment when an array is created, all the arrays elements are given some known initial values,

then there is an alternative shorter way to define, instantiate, and initialize the array.

data_type[] array_name = { element0, element1, element2, ... };

In this situation there is no need to use the new keyword, or to specify the number of array elements.

The next program, Java Example 43, demonstrates the shorter way of creating an array of integer

numbers, when all the array elements have known initial values.

// Java Example 43

public class Main

{

 public static void main (String[] args)

 {

 int[] pi_digits = { 3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5 };

 System.out.println ("The array has " + pi_digits.length + " elements.");

 System.out.print("pi = " + pi_digits[0] + ".");

 for(int i=1; i<=10; i=i+1) System.out.print(pi_digits[i]);

 }

}

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

 51

The next program, Java Example 44, demonstrates the use of an array of String elements.

// Java Example 44

public class Main

{

 public static void main (String[] args)

 {

 String[] week = new String[7];

 week[0] = "Monday";

 week[1] = "Tuesday";

 week[2] = "Wednesday";

 week[3] = "Thursday";

 week[4] = "Friday";

 week[5] = "Saturday";

 week[6] = "Sunday";

 System.out.println ("The week has " + week.length + " days.");

 for(int i=0; i<=6; i=i+1) System.out.println(week[i]);

 }

}

When all the elements on an array are accessed in sequential order, from the first one to the last one,

there is a shorter way of running the for loop, which is called the for-each loop:

for(data_type element_name : array_name) { ... instructions ... }

The next program, Java Example 45, demonstrates the shorter way of creating an array of String

elements with known initial values, and the shorter way of running the for-each loop that prints out, in

sequential order, all the text strings stored in this String[] array.

// Java Example 45

public class Main

{

 public static void main (String[] args)

 {

 String[] week = { "Monday", "Tuesday", "Wednesday", "Thursday",

 "Friday", "Saturday", "Sunday" };

 System.out.println ("The week has " + week.length + " days.");

 for(String day : week) System.out.println(day);

 }

}

The Java.util.Arrays class has some useful static methods that work with arrays. The binarySearch()

method searches for an element in a sorted array, using the binary search algorithm. The equals()

method compares two arrays, to determine if they have the same elements. The fill() method assigns the

same specified value to each array element. The sort() method places all the array elements in

ascending order. For a list of all the methods of the Java.util.Arrays class, please go to

https://www.tutorialspoint.com/java/util/java_util_arrays.htm .

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

52

Warning! A run time error will stop the Java program whenever we have an array element with an

index out of bounds. In technical language we say that an exception is thrown. There are special ways

to catch the exception, handle it, and thus prevent the Java program from stopping, but such advanced

programming techniques are not described here because they are not needed for the IB CS exam. You

can still learn this from other sources. There is no out of bounds error for your love of computer science.

The next program, Java Example 46, demonstrates the run time error caused by an array element with

an index out of bounds.

// Java Example 46

public class Main

{

 public static void main (String[] args)

 {

 int[] digits = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };

 System.out.println(digits[0]); // output : 0

 System.out.println(digits[9]); // output : 9

 System.out.println(digits[13]); // error

 }

}

But why won't the Java compiler catch the index out of bounds error in Java Example 46, why don't we

get a compile time error instead? Because in Java arrays are dynamically allocated, meaning that their

size, and the space that they will take in RAM, are not always known at compile time. For this reason it

was decided that the Java interpreter will have to look for array elements with indices out of bounds.

The next program, Java Example 47, demonstrates the run time error caused by an array element with

an index out of bounds. This time the size of the array is not known at compile time. Depending on the

size decided at run time, the error may happen or not.

// Java Example 47

import java.util.Scanner;

public class Main

{

 public static void main (String[] args)

 {

 Scanner kbdInput = new Scanner(System.in);

 System.out.print("size of array = ? "); // input : type 10 or 20

 int size = kbdInput.nextInt();

 int[] digits = new int[size];

 for(int i=0; i<size; i=i+1) digits[i] = i;

 System.out.println(digits[0]); // output : 0

 System.out.println(digits[9]); // output : 9

 System.out.println(digits[13]); // error when the size is 10

 }

}

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

 53

Not all programming languages check for array elements with an index out of bounds. For example, C

and C++ programs will not report an error, but instead will read from or write into the wrong memory

location. From this point of view Java provides a much safer option.

We can also have two dimensional (2D) arrays, also known as matrices. Elements in matrices are

ordered in rows and columns. Elements in 2D arrays are identified with the help of two indices, two

integer counters that start from zero. We usually think of the first index as the row index, and the second

index as the column index. We can also have three dimensional (3D) arrays, or with more dimensions.

The number of dimensions in an array is given by the number of closed square brackets [].

The declaration of a 2D array can be done in three equivalent ways:

data_type[][] array_name;

data_type array_name[][];

data_type[] array_name[];

The last method of declaring an array is in fact revealing that in Java a 2D array is an 1D array of 1D

arrays. For a 2D array with elements array_name[row][column] , array_name.length gives the

number of rows, and array_name[row].length gives the number of elements (the number of columns)

in the row named row.

Warning! In Java there are different measurements of length that could easily get mixed up. The field

variable array_name.length gives the length (the number of elements) of an array. The method

string_name.length() gives the length (the number of alphanumeric characters) of a text string (an

object of type String).

The next program, Java Example 48, demonstrates the use of a 2D array of integer numbers. The

program shows that, when an array of integer numbers is created, all the elements have the initial value

of zero. The program also shows how the number of rows and the number of columns of a 2D array can

be obtained with the help of the length property.

// Java Example 48

public class Main

{

 public static void main(String[] args)

 {

 int[][] board = new int[10][20];

 board[5][15] = 505;

 System.out.println(board[5][15]); // output : 505

 System.out.println(board[6][16]); // output : 0 , the initial value

 System.out.println(board.length); // output : 10 , the number of rows

 System.out.println(board[0].length); // output : 20 , the number of columns

 }

}

A surprising feature of Java is that we can have a 2D array with rows of different length. While a 2D

array has a well-defined number of rows, sometimes it does not have an equally well defined number of

columns. In that case we can only talk about the number of elements in each individual row.

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

54

The next program, Java Example 49, demonstrates the use of a 2D array of integer numbers that are

placed in rows of different length. The array fifi has five rows, but no defined number of columns. The

Java Example 49 program also demonstrates how to create such an array in just one step, when all the

elements have known initial values.

// Java Example 49

public class Main

{

 public static void main(String[] args)

 {

 int[][] fifi = {{1}, {2, 3}, {4, 5, 6}, {7, 8}, {9}};

 System.out.println("The number of rows : " + fifi.length);

 for(int i=0; i<fifi.length; i=i+1)

 {

 System.out.print("The number of elements in row " + i);

 System.out.println(" : " + fifi[i].length);

 System.out.print("The element(s) in row " + i + " : ");

 for(int j=0; j<fifi[i].length; j=j+1) System.out.print(fifi[i][j] + " ");

 System.out.println("");

 }

 }

}

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

 55

13. Functions: call by value and call by reference

When a function is called, there are two ways in which the input parameters can be provided. The first

option is to give the function a copy of the values of the input parameters. This is a call by value. The

second option is to give the function the addresses (the references) where the input parameters are

stored in RAM. This is a call by reference.

In Java, primitive variables and objects of class String are always given to a function using a call by

value.

The next program, Java Example 50 , demonstrates how a call by value works. The integer variable x

inside the main() function is not changed by the x = x + 100; line inside the addOneHundred()

function. In truth, here we deal with two independent variables, both named x, but existing inside the

bodies of different functions. The x variable inside the main() function is what we call the actual

parameter, and the x variable inside the addOneHundred() function is what we call the formal

parameter. The place in a computer program where a variable lives (where the variable exists, where it

can be accessed) is called the variable scope.

// Java Example 50

public class Main

{

 public static void main(String[] args)

 {

 int x = 505;

 System.out.println("before the function call : x = " + x); // output : 505

 int y = addOneHundred(x);

 System.out.println("after the function call : x = " + x); // output : 505

 }

 static int addOneHundred(int x)

 {

 x = x + 100;

 return x;

 }

}

One could rename the formal parameter, making it very clear that the program works with two different

variables. For example, the addOneHundred() function could be changed into:

static int addOneHundred(int z)

{

 z = z + 100;

 return z;

}

When this addOneHundred() function is called by value, the value of the actual parameter x is

copied into the formal parameter z. In this way the value of x is not changed.

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

56

The next program, Java Example 51 , demonstrates how a call by value works. The String object

named greeting inside the main() function is not changed by the greeting = "Hello Universe!"; line in

the printGreeting() function.

// Java Example 51

public class Main

{

 public static void main(String[] args)

 {

 String greeting = "Hello World!";

 printGreeting(greeting); // output : Hello World!

 printGreeting(greeting); // output : Hello World!

 }

 static void printGreeting(String greeting)

 {

 System.out.println(greeting);

 greeting = "Hello Universe!";

 }

}

In Java, objects (that are not of class String) and arrays are always given to a function using a call by

reference.

The next program, Java Example 52 , demonstrates how a call by reference works. The array of integer

numbers named myArray is given to the addOneHundred() function using a call by reference. As a

result the value of the integer variable stored in myArray[2] changes. As a matter of fact, the values of

all the elements stored in myArray go up by one hundred.

// Java Example 52

public class Main

{

 public static void main(String[] args)

 {

 int[] myArray = { 10, 20, 30, 40, 50 };

 System.out.println("before the function call : " + myArray[2]); // output : 30

 addOneHundred(myArray);

 System.out.println("after the function call : " + myArray[2]); // output : 130

 }

 public static void addOneHundred(int[] z)

 {

 int n = z.length;

 for(int i = 0; i < n; i = i + 1) z[i] = z[i] + 100;

 }

}

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

 57

The next program, Java Example 53 , demonstrates how a call by reference works. The object named x

of type (of class) MyNumber is given to the addOneHundred() function using a call by reference. As

a result the value of the integer variable stored in x.number changes.

// Java Example 53

public class Main

{

 public static void main(String[] args)

 {

 MyNumber x = new MyNumber(300);

 System.out.println("before the function call : " + x.number); // output : 300

 addOneHundred(x);

 System.out.println("after the function call : " + x.number); // output : 400

 }

 public static void addOneHundred(MyNumber z)

 {

 z.number = z.number + 100;

 }

}

class MyNumber

{

 int number;

 public MyNumber(int y) // the constructor

 {

 number = y;

 }

}

Calling a function using a call by reference is a powerful programming technique. It allows us to give a

positive answer to questions like: "Can an input variable be also used as an output variable?" and "Can a

function return more than one output parameter?". With this great power, however, comes great

responsibility. It is very easy to make a mistake and, as a result, change the value of an input variable

that was meant to stay the same. For this reason in Java the programmer does not have direct access to

the actual address in memory of an object or array. Instead, the name of the object or array also

substitutes for the name of the address in RAM (the reference, the pointer) of that object or array.

While, for example, in C and C++ the programmer can find the address in memory of a variable, using

the & operator, this is not possible in Java. While, for example, in C and C++ the content of a location

in memory can be modified using the * operator, this is not possible in Java. In Java there are no

pointers. From this point of view Java is a safer language, but not as powerful as other programming

languages that provide unrestricted access to anything in RAM.

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

58

14. Java programs with command line parameters

A program with command line parameters is executed in a Command Prompt window. Please review

Chapter 1, Three options for running the HelloWorld Java program, Section 1.4, The Command Line

Interface option (javac.exe and java.exe). That program, HelloWorld.java , did not use any command

line parameters. Now you will type, compile, and run a new Java program, called MyNameIs.java , that

takes the name of a person (made of one, two, or more words) as the command line input.

Step 1. Go to the C:\ JavaPrograms folder that you have created in Chapter 1.

Step 2. Inside the JavaPrograms folder create a new text file. Right-click with the mouse, then select

New|Text Document. Change the name of the text file from New Text Document.txt to

MyNameIs.java . The computer will give you a warning message that you should ignore.

Warning! Sometimes you cannot see the file name extension, and as a result you cannot change it from

.txt to .java . To make the file name extension visible you should search for Folder Options (in

Windows 8) or File Explorer Options (in Windows 10), and then uncheck the Hide extensions for

files of known type check box.

Step 3. Using Notepad, open the MyNameIs.java source file, type the code of the Java Example 54

program, listed on the next page, and then save the file and close Notepad.

At this time you should recognize String[] args , the input parameter of the main() method, as an array

of String objects. This array of text strings holds all the command line parameters. We can find the

number of command line parameters in args by checking the args.length property of this array. The

command line parameters, if they exist, are accessed using args[0] , args[1] , ... etc.

Step 4. Open a Command Prompt window. Search for Command Prompt if you need to find it.

Step 5a. Type cd C:\JavaPrograms<ENTER>. This will move the command prompt to the

JavaPrograms directory (folder), which becomes the current directory.

Step 5b. Type dir<ENTER>. This will show all the files and folders in the current directory (folder).

You should see the MyNameIs.java source file there.

Step 5c. Type set path=C:\Program Files\Java\jdk1.8.0_111\bin<ENTER> with no extra spaces. This

will tell the computer where to find the javac.exe and the java.exe executable files.

Warning! If you have a different version of the Java Development Kit (JDK) installed, then you will

have to modify the numbers in the above path accordingly.

Step 5d. Type javac MyNameIs.java<ENTER>. The javac.exe compiler will compile the Java source

file into Bytecode language, and then it will save the compiled output into a .class file.

Step 5e. Type dir<ENTER>. Verify that the MyNameIs.class file is indeed there.

Step 5f. Type java MyNameIs<ENTER>. The java.exe interpreter (the Java Virtual Machine) will turn

the Bytecode into machine code, and then the machine code will get executed, one instruction at a time.

The machine code is specific to the computer that runs the program, but since the Bytecode language is

very close to the actual machine code language, the java.exe interpreter is super-fast.

Step 5g. Type java MyNameIs again, but this time followed by one, two, or more names (or words)

before you hit <ENTER>.

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

 59

// Java Example 54

public class MyNameIs

{

 public static void main(String[] args)

 {

 int n = args.length;

 if (n==0)

 {

 System.out.println("Please type: java MyNameIs firstname lastname");

 }

 else if (n==1)

 {

 System.out.println("Nice to meet you, " + args[0] + ".");

 System.out.println("I don't think I remember your last name.");

 }

 else if (n==2)

 {

 System.out.println("Nice to meet you, " + args[0] + " " + args[1] + ".");

 System.out.println("Your first name matches perfectly your last name.");

 }

 else

 {

 System.out.print ("You have a very long name,");

 for(int i=0; i<n; i++) { System.out.print(" " + args[i]); }

 System.out.println(".");

 System.out.println("But this is not your fault, of course!");

 }

 }

}

A successful compilation and execution of the MyNameIs program looks like this:

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

60

15. Java objects: the ArrayList and the LinkedList classes

Java has two important classes that can be used to handle a list of objects. These are the ArrayList and

the LinkedList classes, both implemented in the java.util package. Instantiated objects of the

ArrayList and LinkedList classes can be used to implement a general type of list, a stack, or a queue.

15.1. The ArrayList class

The objects in an ArrayList list are ordered by index, just like the elements of an array. The advantage

of this implementation is that the objects are very quickly accessed, the Java program knows where the

objects are in RAM, based on their index. The disadvantage of this implementation is that when an old

object is deleted from the list, or when a new object is inserted into the list, all the other subsequent

objects have to change their locations in RAM, because their index changes. Unlike an array of objects,

the size of an ArrayList list can increase in order to accommodate more objects added to the list.

The next program, Java Example 55, demonstrates how an ArrayList list is created, populated with

objects of type String, Float, or Integer, and how these objects are then listed in order. Notice the two

different ways in which the list elements can be printed, by using the for loop or by using the list name.

// Java Example 55

import java.util.ArrayList;

public class Main

{

 public static void main(String[] args)

 {

 ArrayList myList = new ArrayList();

 myList.add("apple"); // the object with index 0

 myList.add("banana"); // the object with index 1

 myList.add(3.1416); // the object with index 2

 myList.add(4); // the object with index 3

 myList.add("coconut"); // the object with index 4

 myList.add("pumpkin"); // the object with index 5

 for(int i=0; i<6; i=i+1)

 System.out.println(myList.get(i));

 myList.remove(4); // remove the object with index 4, "coconut"

 myList.remove("banana"); // remove the object "banana"

 myList.remove(3.1416); // remove the object 3.1416

 System.out.println("");

 System.out.println(myList);

 myList.add(1, "cheese"); // add the object "cheese" in the second place

 myList.add(0, "steak"); // add the object "steak" in the first place

 myList.add(5, 505); // add the object 505 in the last place

 System.out.println("");

 System.out.println(myList);

 }

}

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

 61

Warning! Objects of type Float or Integer are not the same thing as primitive variables of type float or

int. An Integer object contains a long variable and some auxiliary methods. We say that the Integer

class is a wrapper class. You will find more information about the Java wrapper classes in Chapter 16.

Please notice that the myList.remove(4); line does not remove the Integer object 4, but instead it

removes the String object "coconut", whose index is equal to 4.

If all the objects in a list are of the same class, for example if all the objects in the myList list are of

class String, then this list should be created as a generic collection using

ArrayList<String> myList = new ArrayList<String>();

15.2. Important methods of the ArrayList class : add() , get(), remove(), indexOf(), clear(), size(),

isEmpty()

The add(object) method adds an object at the end of the list.

The add(index, object) method adds an object in the list, at the position given by the index.

The get(index) method returns the object found in the list at the position given by the index.

The remove(index) method removes the object found in the list at the position given by the index.

The remove(object) method removes the object from the list, the first time it is found.

The indexOf(object) method returns the index of the object, the first time it is found, or ‒1 if the object

is not found in the list.

The clear() method removes all the elements from the list.

The size() method returns the number of objects in the list.

The isEmpty() method returns true when the list is empty, otherwise it returns false.

For a list of all the methods of the ArrayList class, please go to:

https://www.javatpoint.com/java-arraylist

15.3. The LinkedList class

The objects in an LinkedList are connected like chain links in a chain. In technical terms we say that a

LinkedList is a doubly linked list, that means that each element of the list knows the locations in RAM

(the addresses) of its previous element and of its next element. If there is no previous element (it

happens for the first element of the list) then the recorded address is NULL. If there is no next element

(it happens for the last element of the list) then the recorded address is NULL. The advantage of this

implementation is that when an old object is deleted from the list, or when a new object is inserted into

the list, all the other objects keep their locations in RAM, and the deletion and insertion operations are

very fast. The disadvantage of this implementation is that the objects are less quickly accessed, the Java

program has to travel down the list, using the RAM addresses provided by the list elements, until it

finds the object it is looking for.

The next program, Java Example 56 , demonstrates how a LinkedList is created, populated with objects

of type String, and how these objects are then listed in order.

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

62

By comparing the two programs, Java Example 55 and Java Example 56, one can easily notice that the

same add(), get(), and remove() methods are used, and that, from a Java programming point of view,

the use of an ArrayList list is very similar to the use of a LinkedList list. It is only in the machine code

implementations and in the RAM allocations that the differences between the two types of list show up.

// Java Example 56

import java.util.LinkedList;

public class Main

{

 public static void main(String[] args)

 {

 LinkedList<String> myList = new LinkedList<String>();

 myList.add("apple"); // the object with index 0

 myList.add("banana"); // the object with index 1

 myList.add("orange"); // the object with index 2

 myList.add("cherry"); // the object with index 3

 myList.add("coconut"); // the object with index 4

 myList.add("pumpkin"); // the object with index 5

 for(int i=0; i<6; i=i+1)

 System.out.println(myList.get(i));

 myList.remove(4); // remove the object with index 4, "coconut"

 myList.remove("banana"); // remove the object "banana"

 System.out.println("");

 System.out.println(myList);

 myList.add(2, "cheese"); // add the object "cheese" in the third place

 myList.add(0, "steak"); // add the object "steak" in the first place

 myList.add(6, "ice cream"); // add the object "ice cream" in the last place

 System.out.println("");

 System.out.println(myList);

 }

}

15.4. Important methods of the ArrayList class : add() , get(), remove(), indexOf(), clear(), size(),

isEmpty(), addFirst(), addLast(), element(), getFirst(), getLast(), removeFirst(), removeLast(),

push(), pop(), peek()

The add(object) method adds an object at the end of the list.

The add(index, object) method adds an object in the list, at the position given by the index.

The get(index) method returns the object found in the list at the position given by the index.

The remove(index) method removes the object found in the list at the position given by the index.

The remove(object) method removes the object from the list, the first time it is found.

The indexOf(object) method returns the index of the object, the first time it is found, or ‒1 if the object

is not found in the list.

The clear() method removes all the elements from the list.

The size() method returns the number of objects in the list.

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

 63

The isEmpty() method returns true when the list is empty, otherwise it returns false.

The addFirst(object) method adds an object at the beginning of the list.

The addLast(object) method adds an object at the end of the list.

The element() method returns the first object in the list.

The getFirst() method returns the first object in the list.

The getLast() method returns the last object in the list.

The removeFirst() method removes the first object in the list.

The removeLast() method removes the last object in the list.

The push(object) method pushes an object on the stack, that means it adds an object at the top of the

list (the top of the stack). A stack is a Last In, First Out (LIFO) list.

The pop() method pops an object from the stack, that means it gets, and then it removes, the object from

the top of the list (the top of the stack). A stack is a Last In, First Out list.

The peek() method peeks at the top object on the stack, that means it gets, but it does not remove, the

object from the top of the list (the top of the stack). A stack is a LIFO list.

For a list of all the methods of the LinkedList class, please go to:

https://www.javatpoint.com/java-linkedlist

The next program, Java Example 57 , demonstrates how a LinkedList list is used as a stack.

// Java Example 57

import java.util.LinkedList;

public class Main

{

 public static void main(String[] args)

 {

 String s;

 LinkedList<String> myList = new LinkedList<String>();

 myList.push("apple");

 myList.push("banana");

 myList.push("orange");

 System.out.println(myList);

 s = myList.pop();

 System.out.println(s); // output : orange

 System.out.println(myList);

 s = myList.peek();

 System.out.println(s); // output : banana

 System.out.println(myList);

 s = myList.pop();

 System.out.println(s); // output : banana

 System.out.println(myList);

 }

}

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

64

15.5. Pseudocode methods for collections

The IB booklet "Pseudocode in Examinations" mentions the names of some pseudocode methods used

with collections of elements :

The addItem() method adds an item (variable, text string, or object) to the collection. Presumably the

item is added at the end of the list.

The getNext() method gets the next item, without removing it from the collection. This method, the first

time when it is called, will return the first item in the collection. Presumably this method uses an index

(an integer number) to keep track of the item in focus, the same way a cursor under a letter keeps that

letter in focus. After each call, the getNext() method increments the index.

The resetNext() method resets the index to its smallest value, bringing the first item in the collection in

focus.

The hasNext() method returns true if the index is in the allowed range, this means that the getNext()

method will read a valid element when called. Otherwise, if all the elements of the collection have been

read, and the index is past its largest valid value, the hasNext() method returns false .

The isEmpty() method returns true if the collection has no elements, else it returns false .

The IB booklet "Pseudocode in Examinations" mentions the names of some methods used with stacks :

(A stack is a Last In, First Out (LIFO) list.)

The push(item) method pushes an item (variable, text string, or object) on the stack, that means it adds

an item at the top of the stack. It is similar to the addLast(object) method.

The pop() method pops an object from the stack, that means it gets, and then it removes, the object from

the top of the stack. It is similar to the getLast() method followed by the removeLast() method.

The isEmpty() method returns true when the stack is empty, otherwise it returns false.

The IB booklet "Pseudocode in Examinations" mentions the names of some methods used with queues :

(A queue is a First In, First Out (FIFO) list.)

The enqueue(item) method adds an item (variable, text string, or object) at the end of the queue. It is

similar to the addLast(object) method.

The dequeue() method gets and removes the item from the front of the queue. It is similar to the

getFirst() method followed by the removeFirst() method.

The isEmpty() method returns true when the queue is empty, otherwise it returns false.

While most pseudocode methods are not real Java methods (the exceptions here being push() , pop() ,

and isEmpty()), one still needs to know about them because of some questions on the IB Computer

Science exam. The students have to be able to read and understand programs written in pseudocode.

Should students also spend time learning how to write programs in pseudocode? The IB booklet

"Pseudocode in Examinations" mentions that "It is accepted that under exam conditions candidates

may, in their solutions, use pseudocode similar to a programming language with which they are

familiar. This is acceptable. The markscheme will be written using the approved notation. Provided the

examiners can see the logic in the candidate’s response, regardless of language, it will be credited."

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

 65

16. Random Numbers

Random numbers are very important in computer programming because many video games (♠ ♣ ♥ ♦)

need them. Many computer simulations of real life situations also need them. Java has a few options for

generating random numbers: the Math.random() method, the Random class, and the shuffle() method

of the Collections class.

16.1. Generating random numbers using the Math.random() method

The simplest way to generate a random number in Java is to call the static random() method of the

Math class. Math.random() returns a real random number (of type double) in the [0, 1) interval.

Math.random()  real random number in the [0, 1) interval

MAX*Math.random()  real random number in the [0, MAX) interval

MIN + (MAX - MIN)*Math.random()  real random number in the [MIN, MAX) interval

To change a number of type double into a number of type int we use the typecasting operator (int) in

front of the numerical expression of type double. The real number will be truncated (rounded down) to

an integer number, and the fractional part of the real number will be ignored. If N and M are two integer

numbers, with N < M , then

N*Math.random()  real random number in the [0, N) interval

(int) (N*Math.random())  integer random number in the {0, 1, ... , N ‒ 1} set

(int) (N*Math.random() + M)  integer random number in the {M, M + 1, ... , M + N ‒ 1} set

In particular, to generate an integer random number in the {1, 2, 3, 4, 5, 6} set, we use the line:

int i = (int) (6*Math.random() + 1); // roll of the die

Sometimes it is helpful to define a function that generates an integer random number from MIN to

MAX, with the limits included. According to the above discussion, MIN = M and MAX = M + N ‒1 .

These two equations are equivalent to M = MIN and N = MAX ‒ MIN + 1 .

(int) ((MAX ‒ MIN + 1)*Math.random() + MIN)  integer random number in the

 {MIN, MIN + 1, ... , MAX ‒ 1, MAX} set

The next program, Java Example 58, prints an integer random number from 1 to 6.

// JAVA Example 58

public class Main

{

 public static void main(String[] args)

 {

 int i = (int) (6*Math.random() + 1); // roll of the die

 System.out.println("roll of the die : i = " + i);

 }

}

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

66

16.2. Generating random numbers using the Random class

An alternative way to generate a random number is to instantiate an object of the Random class, and to

use one of the nextInt() , nextLong() , nextFloat() , nextDouble() , or nextBoolean() methods. These

methods return random numbers in different intervals.

nextInt(N)  integer random number in the {0, 1, ... , N ‒ 1} set

nextInt()  integer random number in the {‒2
31

, ... , 2
31

 ‒ 1} set

nextLong()  long integer random number in the {‒2
63

, ... , 2
63

 ‒ 1} set

nextFloat()  real random number (of type float) in the [0, 1) interval

nextDouble()  real random number (of type double) in the [0, 1) interval

nextBoolean()  random boolean value, true or false

There are two possible ways to use the nextInt() method, one with an input argument, and one without.

This is an example of method overloading.

The next program, Java Example 59, produces random numbers using all these methods of the Random

class. An objects of the Random class needs to be instantiated before these functions are called.

// JAVA Example 59

import java.util.Random;

public class Main

{

 public static void main(String[] args)

 {

 Random myRandom = new Random();

 int i = myRandom.nextInt(6) + 1; // roll of the die

 int j = myRandom.nextInt();

 long k = myRandom.nextLong();

 float f = myRandom.nextFloat();

 double g = myRandom.nextDouble();

 boolean b = myRandom.nextBoolean();

 System.out.println("roll of the die i = " + i);

 System.out.println("random integer number (int) j = " + j);

 System.out.println("random integer number (long) k = " + k);

 System.out.println("random real number (float) f = " + f);

 System.out.println("random real number (double) g = " + g);

 System.out.println("random boolean value b = " + b);

 }

}

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

 67

How do random number generators work? The computer cannot roll a die in order to get a truly random

number. The truth is that the "random" numbers produced by the computer are not truly random, they

only look like random numbers to an unsuspecting eye. We call them pseudorandom numbers. To

generate these pseudorandom numbers the computer starts with a given number, called the seed, and

then it applies an algorithm to get the next number in the series. Often the first seed is just the system

time in microseconds, or a part of it.

In Java the system time in milliseconds is returned by the System.currentTimeMillis() method.

16.3. The shuffle() method of the Java Collections class

Another way of introducing randomness into a Java program is to shuffle a collection of objects. This

operation is similar to the shuffling of a deck of playing cards. The shuffle() method belongs to the

Collections class, which has a set of static methods for storing and manipulating groups of objects. The

objects in the collection, like the playing cards in the deck, end up in random positions. The methods of

the Collections class can act on ArrayList or LinkedList lists.

The next program, Java Example 60, shuffles a set of 10 integer numbers.

// Java Example 60

import java.util.ArrayList;

import java.util.Collections;

public class Main

{

 public static void main(String[] args)

 {

 int N = 10; // the number of elements in the list

 ArrayList<Integer> myList = new ArrayList<Integer>();

 for(int i=0; i<N; i=i+1) myList.add(i);

 System.out.println("myList before shuffle:");

 for(int i=0; i<N; i=i+1) System.out.println(myList.get(i));

 Collections.shuffle(myList);

 System.out.println("myList after shuffle:");

 for(int i=0; i<N; i=i+1) System.out.println(myList.get(i));

 }

}

It is important to notice that the myList.add(i); instruction does not add to the collection a primitive

variable of type int, but instead it adds to the collection an object of class Integer. The Integer class is

one of the so called wrapper classes. The Java wrapper classes transform primitive variables into

objects. These objects have just one field variable, the primitive variable we start with, together with

some related methods. For example, an object of class Integer has just one field variable, a primitive

variable of type long , packaged together with some helpful methods.

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

68

Primitive variable type Wrapper class

char Character

byte Byte

short Short

long Integer

float Float

double Double

boolean Boolean

The wrapper classes can be used with the standard constructor, or with the autoboxing feature, which

simplifies the conversion of the primitive variable into an object. The unboxing feature simplifies the

conversion of the object into a primitive variable.

Standard constructor With autoboxing With unboxing

Character ch = new Character('a'); Character ch = 'a'; char c = ch;

Byte bt = new Byte((byte) 100); Byte bt = 100; byte b = bt;

Short st = new Short((short) 30000); Short st = 30000; short s = st;

Integer it = new Integer(1000000); Integer it = 1000000; long i = it;

Float ft = new Float(3.1416); Float ft = 3.1416F; float f = ft;

Double db = new Double(5.6E40); Double db = 5.6E40; double d = db;

Boolean bn = new Boolean(true); Boolean bn = true; boolean b = bn;

16.4. Important static methods of the Java wrapper classes

Each wrapper class comes with some static methods. Two of the most commonly used methods turn a

String object into a primitive variable, and vice-versa. The Integer.parseInt(String s) method returns

an integer (int) number. The String object s is converted into the int equivalent. For example

Integer.parseInt("‒505") returns ‒505 . The Integer.toString(int) method returns a String object, the

equivalent of the integer number. For example Integer.toString(505) returns "505" . There is also a

toString() method that does not have an int parameter, used with objects that have been initialized.

Conversion from String Conversion to String

Warning! Character.parseChar() does not exist. String s = Character.toString('a');

byte b = Byte.parseByte("100"); String s = Byte.toString((byte) 100);

short s = Short.parseShort("30000"); String s = Short.toString((short) 30000);

int i = Integer.parseInt("1000000"); String s = Integer.toString(1000000);

float f = Float.parseFloat("3.1416"); String s = Float.toString(3.1416F);

double d = Double.parseDouble("5.6E40"); String s = Double.toString(5.6E40);

boolean t = Boolean.parseBoolean("true"); String s = Boolean.toString(true);

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

 69

17. Object-Oriented Programming: Encapsulation

17.1. Accessor (getter) and mutator (setter) methods

Encapsulation is a fundamental feature of Object-Oriented Programming. A capsule, in general, is a

small container with some protected content inside. Think about a pharmaceutical capsule (a small

gelatinous case holding the medication), a space capsule (a small spacecraft protecting the astronauts

during landing), or a time capsule (a sealed box with some objects intentionally saved for future times).

In Java encapsulation describes the protection of some instance variables inside an object.

In Java encapsulation is implemented using the private keyword in front of the protected instance

variables (field variables). As a consequence these protected field variables can be accessed (read or

written) only by methods of the same object. Usually the objects have dedicated public methods that

read from RAM the value of the private instance variables, called accessor methods (also called getter

methods), and dedicated methods that write into RAM the value of the private instance variables,

called mutator methods (also called setter methods). (How to remember the "mutator" name? Think

that in biology a mutation is a change in the DNA. A mutator method brings a change of value.)

The biggest advantage of encapsulation is that the protected instance variables are safe from

unauthorized direct access. Indirect access is still granted through the public accessor (getter) and

mutator (setter) methods, or through other public methods of that class. Encapsulation also minimizes

the chance of an accidental corruption of the data, since in minimizes the chance of a programming

error with that effect. Encapsulation is a form of abstraction, it hides from the user the implementation

details of the accessor and mutator methods. As a result the maintenance and/or the modification of the

accessor and mutator methods is done easier, without the need of making any changes in the classes that

are accessing (reading or writing) the protected instance variables.

You have already seen an example of encapsulation in Java Example 36. In that program the private

myText text string is set by the MyHello() constructor and then is printed out by the printGreeting()

function. We now expand the Java Example 36 program by adding accessor (getter) and mutator (setter)

methods.

The program shown in Java Example 61 has two classes. The public Main class has the static main()

method, which is the entry point into the program. The MyHello class has one instance variable, the

private myText text string object. This private instance variable can be read or written only by the four

public methods of the MyHello class: MyHello() , printGreeting() , setText() , and getText() .

The greeting object is declared and created (instantiated) in the first line of the main() method. The

greeting.myText instance variable is given the initial value of "Hello World!" by the MyHello()

constructor. This initial value is printed on the screen by the printGreeting() method. Next, the initial

value of greeting.myText is changed into "I love Computer Science!" by the setText() mutator method.

This new value of greeting.myText is read by the getText() accessor method, which returns the value

of this private text string. The new message is then printed on the screen by the System.out.println()

method.

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

70

// Java Example 61

public class Main

{

 public static void main(String[] args)

 {

 MyHello greeting = new MyHello("Hello World!");

 greeting.printGreeting();

 greeting.setText("I love Computer Science!");

 String newText = greeting.getText();

 System.out.println(newText);

 }

}

class MyHello

{

 private String myText; // the protected instance variable

 public MyHello(String text) // the constructor

 {

 myText = text;

 }

 public void printGreeting()

 {

 System.out.println(myText);

 }

 public void setText(String text) // the mutator (setter) method

 {

 myText = text;

 }

 public String getText() // the accessor (getter) method

 {

 return myText;

 }

}

17.2. The JAVA access modifiers: public, private, protected

To access a variable means that you can find (read, get) or change (write, set) its value.

To access a function means that you can use (call, execute, invoke) that function.

To access an object means that you can access the variables, functions, and objects that belong to that

given object.

A JAVA access modifier is a JAVA keyword that determines what functions have or do not have

access to the variables, functions, or objects to whom that JAVA access modifier applies.

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

 71

The operational definitions of the Java access modifiers are given in the table below:

none (default) The variables, functions, and objects from that given class can be
accessed by functions from classes in the same package .

public The variables, functions, and objects from that given class can be
accessed by functions from any class (from any package).

private The variables, functions, and objects from that given class can be
accessed by functions from the same class . Functions from other classes
in the same package do not have access.

protected The variables, functions, and objects from that given class can be
accessed by functions from the same class or from any of its subclasses .
Functions from other classes in the same package also have access.

A summary of the consequences of the Java access modifiers is given in the table below:

Access modifier Access by
functions from
the same class

Access by
functions from

the same
package

Access by
functions from
subclasses of

other packages

Access by
functions from
any class (from
any package)

public Yes Yes Yes Yes

protected Yes Yes Yes No

none (default) Yes Yes No No

private Yes No No No

One question still remains. What is a subclass? Read the next chapter to find the answer.

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

72

18. Object-Oriented Programming: Inheritance

Inheritance is a fundamental feature of Object-Oriented Programming. Inheritance, in general, refers to

the transfer of some property (money, houses, valuable objects) from a dead person to his or her

children, other family members, or friends.

In Java inheritance describes the transfer, from one class (the parent class) to another class (the child

class), of all the non-private field variables, methods, and classes of the parent class.

The parent class is also called the superclass, or the base class. The child class is also called the

subclass, or the derived class. The child class does not inherit the constructor(s) of the parent class, but

the default constructor of the child class always starts by calling the default constructor of the parent

class. (Not needed for the IB CS exam: A constructor of the child class can call a constructor of the

parent class using the super() keyword.)

In Java inheritance is implemented using the extends keyword in the declaration of the child class. The

parent class must be declared in the Java program before the child class is declared.

class ParentClass { ... }

class ChildClass extends ParentClass { ... }

In this way an object of type ChildClass will have all the non-private field variables, methods, and

objects of an object of type ParentClass . The ChildClass class can also have additional field variables,

methods, and objects, which the ParentClass class does not have.

The biggest advantage of inheritance is the ability of the child class to reuse code written for the parent

class. Inheritance not only shortens the development time of a new program, but also results in better

structured and more robust programs, since usually the code of the parent class has been optimized and

is well tested against all kinds of possible errors.

The program shown in Java Example 62 has three classes. The public Main class has the static main()

method, which is the entry point into the program. The Book parent class (superclass) has two field

variables, title and author , and one method, printInfo() . The Textbook child class (subclass) has an

additional field variable, subject , and an additional method, printMoreInfo() . The myTextbook

object, which is an instance of the Textbook child class, has the three field variables and the two

methods listed above. After the myTextbook object is created (instantiated), all its field variables are

given values, and all its methods are called from the main() method. There is no distinction between

field variables and methods that are inherited, and field variables and methods that are not inherited.

They all work in the same way, as if all the Java lines of code from the body of the Book parent class

were copied and pasted inside the body of the Textbook child class.

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

 73

// Java Example 62

public class Main

{

 public static void main(String[] args)

 {

 Textbook myTextbook = new Textbook();

 myTextbook.title = "Elements";

 myTextbook.author = "Euclid";

 myTextbook.subject = "Geometry";

 myTextbook.printInfo();

 myTextbook.printMoreInfo();

 }

}

class Book // the parent class

{

 String title;

 String author;

 void printInfo()

 {

 System.out.println("title = " + title);

 System.out.println("author = " + author);

 }

}

class Textbook extends Book // the child class

{

 String subject;

 void printMoreInfo()

 {

 System.out.println("subject = " + subject);

 }

}

Sometimes the child class will define a field variable that has the same name as a field variable of the

parent class. In this situation, inside the body of the child class, the child variable will replace the parent

variable, because the definition of the child variable is inside the curly brackets { } of the child class,

and thus it has priority there. More clarity can be achieved by using the this keyword, which, inside the

body of the child class, refers to the current object. The instance variable of the parent class is still

available, using the super keyword, which, inside the body of the child class, refers to the parent class.

The next program, Java Example 63, shows how to access field variables that have the same name in

both the child and the parent classes. The program demonstrates the use of the this and super keywords.

The myBook object of class Book is the parent, and the myTextbook object of class Textbook is the

child. The two field variables are named myBook.title and myTextbook.title . From within the

myTextbook object, title and this.title refer to myTextbook.title , but super.title refers to an inherited

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

74

field variable identical to myBook.title . This inherited field variable exists even without an instantiated

myBook object.

// Java Example 63

public class Main

{

 public static void main(String[] args)

 {

 Book myBook = new Book();

 System.out.println(myBook.title); // output : How to win at poker

 Textbook myTextbook = new Textbook();

 System.out.println(myTextbook.title); // output : Applied statistics

 myTextbook.printDemo();

 }

}

class Book // the parent class

{

 String title = "How to win at poker";

}

class Textbook extends Book // the child class

{

 String title = "Applied statistics";

 void printDemo()

 {

 System.out.println(title); // output : Applied statistics

 System.out.println(this.title); // output : Applied statistics

 System.out.println(super.title); // output : How to win at poker

 }

}

Sometimes the child class will define a method that has the same name and the same signature (the

same return type and the same input parameters) as a method of the parent class. This is called method

overriding. In this situation, inside the body of the child class, the child method will replace the parent

method, because the definition of the child method is inside the curly brackets { } of the child class, and

thus it has priority there. More clarity can be achieved by using the this keyword, which, inside the

body of the child class, refers to the current object. The method of the parent class is still available,

using the super keyword, which, inside the body of the child class, refers to the parent class.

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

 75

The next program, Java Example 64, shows how to access methods that have the same name in both the

child and the parent classes. The program demonstrates the use of the this and super keywords. The

myBook object of class Book is the parent, and the myTextbook object of class Textbook is the child.

The two methods are named myBook.printTitle() and myTextbook.printTitle() . From within the

myTextbook object, printTitle() and this.printTitle() refer to myTextbook.printTitle() , but

super.printTitle() refers to an inherited method identical to myBook.printTitle() . This inherited

method exists even without an instantiated myBook object.

// Java Example 64

public class Main

{

 public static void main(String[] args)

 {

 Book myBook = new Book();

 myBook.printTitle(); // output : How to win at poker

 Textbook myTextbook = new Textbook();

 myTextbook.printTitle(); // output : Applied statistics

 myTextbook.printDemo();

 }

}

class Book // the parent class

{

 void printTitle()

 {

 System.out.println("How to win at poker");

 }

}

class Textbook extends Book // the child class

{

 void printTitle()

 {

 System.out.println("Applied statistics");

 }

 void printDemo()

 {

 printTitle(); // output : Applied statistics

 this.printTitle(); // output : Applied statistics

 super.printTitle(); // output : How to win at poker

 }

}

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

76

19. Object-Oriented Programming: Polymorphism

Polymorphism is a fundamental feature of Object-Oriented Programming. In Greek "polys" means

"many" or "much" and "morphe" means "form" or "shape". In general polymorphism refers to a

situation in which something has several different shapes, forms, behaviors, etc.

In Java polymorphism describes a situation in which a unique method name is associated with several

different behaviors. If we identify a method not by its name, but by its body (the code), then

polymorphism means that we can have different methods with the same name.

In Java there are two types of polymorphism: compile time polymorphism (due to method

overloading) and run time polymorphism (due to method overriding).

19.1. Method overloading (compile time polymorphism)

In Java the same class can have two or more different methods with the same name, but with different

numbers or types of input parameters. This is called method overloading. Java decides which method

to call (to use) when the program is compiled, based on the number or the types of the input variables.

The number of input parameters of a function, together with the type (primitive variable type or class

type) of each of these input parameters, is called the signature of the function.

Warning! One should also remember that the type of the output variable (the return type of a function)

cannot be used in Java to distinguish between two functions (two methods) with the same name and

with the same signature (the same number and the same type of input parameters).

Not only methods (functions) can show polymorphism, arithmetic operators can also have polymorphic

behavior. The "+" addition operator can add two numbers, or concatenate two text strings. The "/"

division operator can divide two real numbers (with no rounding of the answer), or divide two integer

numbers (with the rounding down of the answer to an integer value).

The next program, Java Example 65, demonstrates the polymorphic behavior of the division operator.

// Java Example 65

public class Main

{

 public static void main(String[] args)

 {

 System.out.println(" 12 / 5 = " + 12/5); // output : 2

 System.out.println(" 12.0 / 5.0 = " + 12.0/5.0); // output : 2.4

 }

}

The next program, Java Example 66, uses the vectorLength() method to calculate the length (the

magnitude) of a vector. There are four different implementations of the method, all with the same name,

but each with different numbers of input parameters. This is a case of method overloading. We have a

vectorLength() implementation for one dimensional vectors, another one for two dimensional vectors,

another one for three dimensional vectors, and another one for four dimensional vectors. The length of

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

 77

the vector is calculated using the Math.sqrt() square root function, available in Java as a static method

of the Math class. To optimize the program, just for the one dimensional case, one could also use the

Math.abs(x) absolute value function instead of the Math.sqrt(x*x) square root function.

// Java Example 66

public class Main

{

 public static void main(String[] args)

 {

 System.out.println("length of (-7) = " + vectorLength(-7));

 System.out.println("length of (3, 4) = " + vectorLength(3, 4));

 System.out.println("length of (3, 4, 12) = " + vectorLength(3, 4, 12));

 System.out.println("length of (3, 4, 12, -17) = " + vectorLength(3, 4, 12, -17));

 }

 static double vectorLength(double x)

 {

 return Math.sqrt(x*x);

 }

 static double vectorLength(double x, double y)

 {

 return Math.sqrt(x*x + y*y);

 }

 static double vectorLength(double x, double y, double z)

 {

 return Math.sqrt(x*x + y*y + z*z);

 }

 static double vectorLength(double x, double y, double z, double u)

 {

 return Math.sqrt(x*x + y*y + z*z + u*u);

 }

}

The next program, Java Example 67, gives another example of method overloading. Here the sum()

function can add 2 integer numbers (of type int), 3 integer numbers, or 2 real numbers (of type double).

The different implementations of the sum() method have either different numbers of input parameters (2

or 3) or different types of input parameters (int or double).

What happens if we call the sum() function with two non-matching input arguments, one integer

number and one real number? Will the first or the third implementation be used, or will we get an error

message? Run the program and discover that in this case the third implementation of the sum() method

is used. It turns out that in a situation like this Java changes a number of type int into a number of type

double . This happens because there is no loss of precision when an integer number is converted into a

real number. The opposite is not true, usually there is some rounding up or rounding down when a real

number is converted into an integer number.

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

78

// Java Example 67

public class Main

{

 public static void main(String[] args)

 {

 System.out.println("1 + 8 = " + sum(1, 8));

 System.out.println("2 + 3 + 4 = " + sum(2, 3, 4));

 System.out.println("4.0 + 5.0 = " + sum(4.0, 5.0));

 System.out.println("3 + 6.0 = " + sum(3, 6.0));

 }

 static int sum(int x, int y)

 {

 System.out.println("the first implementation of the method sum()");

 return x + y;

 }

 static int sum(int x, int y, int z)

 {

 System.out.println("the second implementation of the method sum()");

 return x + y + z;

 }

 static double sum(double x, double y)

 {

 System.out.println("the third implementation of the method sum()");

 return x + y;

 }

}

19.2. Method overriding (run time polymorphism)

In Java a parent class (a superclass) and a child class (a subclass) can have different methods with the

same name and with the same signature (the same number and the same types of input parameters).

This is called method overriding.

In Java, according to inheritance rules, an object of a child class is also an object of the parent class (this

is the IS-A relationship). As a result, one can instantiate (create) an object of a child class that has an

object reference (a pointer) of the parent class type. In other words, a constructor of a child class can be

called to instantiate an object of the parent class. The object is of the parent class type because it was

declared in this way, and the constructor of a child class cannot change this declaration statement.

An object of the parent class can be instantiated (created) using a constructor of a child class.

Warning! When an object of the parent class (an object that has an object reference of parent class

type) is instantiated using a constructor of a child class, the object can access only the field variables

and the methods of the parent class.

Warning! Please also notice that, because an object of the parent class is not an object of a child class,

one cannot call the constructor of the parent class in order to instantiate an object of a child class.

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

 79

The next program, Java Example 68, shows how a constructor of the child class can be used to

instantiate an object of the parent class. For comparison, the other two more common options (when the

constructor matches the class of the declared object) are also shown.

// Java Example 68

public class Main

{

 public static void main(String[] args)

 {

 Book myBook = new Book();

 Textbook myTextbook = new Textbook();

 Book trouble = new Textbook(); // a Textbook object IS-A Book object

 // Textbook impossible = new Book(); // error message

 }

}

class Book // the parent class

{

 String title = "How to win at poker";

}

class Textbook extends Book // the child class

{

 String title = "Applied statistics";

}

Suppose that we have a parent class, a child class, and method overriding. During compile time, based

only on the object reference (known to be of parent class type), Java cannot decide which method to

use, the one of the parent class or the one of the child class. This is because the Java compiler cannot

tell, based on just the object reference of parent class type, whether the parent class constructor was

used, or whether a child class constructor was used when the object was instantiated (created). Java will

decide which method to call only when the program is running, based on the class type of the actual

object associated with the method call, at that specific time and place in the program.

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

80

The same object reference (of parent class type) can point to a parent object in one place in the program,

and to a child object in a different place in the program.

In the next program, Java Example 69, the myPet object reference (of class Animal) can hold the

address of an object of class Animal (the parent class) or the address of an object of class Dog (the child

class). The Animal parent class (the superclass) has a method named talk() that is overridden by the

Dog child class (the subclass). In the Java program the two myPet.talk(); lines of code, although

identical, will print different messages. A human looking at the Java program listed below can tell right

away what talk() method will be called by each myPet.talk(); instruction, but the Java compiler, who

works with only one instruction at a time, cannot. The Java compiler cannot mentally go through the

listing of the program, line by line, and then make decisions based on past instructions.

Java Example 69

public class Main

{

 public static void main(String[] args)

 {

 Animal myPet;

 myPet = new Animal();

 myPet.talk(); // output : I am an animal.

 myPet = new Dog();

 myPet.talk(); // output : I am a dog.

 }

}

class Animal

{

 void talk()

 {

 System.out.println("I am an animal.");

 }

}

class Dog extends Animal

{

 void talk()

 {

 System.out.println("I am a dog.");

 }

}

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

 81

The same object reference (of parent class type) can point to a parent object, or to a child object, at the

same place in the program. Such a circumstance makes it easy to understand why Java can decide what

method to call only at run time, and not at compile time.

In the next program, Java Example 70, the myPet object reference (of class Animal) can hold the

address of an object of class Animal (the parent class) or the address of an object of class Dog (the child

class). The Animal parent class (the superclass) has a method named talk() that is overridden by the

Dog child class (the subclass). A random number decides the actual class of the instantiated myPet

object, and it is impossible to know at compile time what talk() method will be called by the

myPet.talk(); instruction at run time. Run the program several times to see that different messages are

indeed printed by the one and only myPet.talk(); instruction.

Java Example 70

public class Main

{

 public static void main(String[] args)

 {

 Animal myPet;

 if(Math.random() < 0.5)

 {

 myPet = new Animal();

 }

 else

 {

 myPet = new Dog();

 }

 myPet.talk(); // which method to call can be decided only at run time

 }

}

class Animal

{

 void talk()

 {

 System.out.println("I am an animal.");

 }

}

class Dog extends Animal

{

 void talk()

 {

 System.out.println("I am a dog.");

 }

}

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

82

20. The relationships between Java classes, and their UML diagrams

There are three possible ways in which two classes can be related to each other. These three connections

between classes are described as inheritance, aggregation, and dependency.

20.1. The "IS A" relationship (inheritance)

The inheritance relationship describes two classes related by inheritance, for example:

class ParentClass { ... }

class ChildClass extends ParentClass { ... }

The child class inherits all the non-private instance variables, methods, and objects of the parent class.

Looking at just these inherited properties, there is no difference between the two classes. We say that an

object of type ChildClass is also an object of type ParentClass . From a practical point of view, the

programmer needs to be aware of the fact that any changes in the declarations and definitions of the

parent class will also be inherited by the child class.

20.2. The "HAS A" relationship (aggregation)

The aggregation relationship describes two classes, when an object of one class type owns an object (or

an array of objects) of the other class type. For example:

class Book { ... }

class BookShelf { Book bestBook; Book [] myBooks; ... }

We say that an object of type BookShelf has objects of type Book . From a practical point of view, the

programmer needs to be aware of the fact that changes in the declarations and definitions of the Book

class will probably require changes in the code of the BookShelf class.

20.3. The "USES A" relationship (dependency)

The dependency relationship describes two connected classes, when an object of one class uses a field

variable or a method of another class. For example, we could have an object of a given class (or a

method of a static class) that gets a random number using the Math class, with the help of the

Math.random() method. In this case that given class (or maybe the static Main() class that does not

need an instantiated object) uses the Math class.

It is good programming practice to reduce the number of relationships between classes, whenever this is

possible. The more connections between classes and their instantiated objects we have, the harder it is to

make changes to the Java program, because the changes have to be implemented simultaneously in

several different places. More connections between classes also make a Java program harder to read and

understand. The extra effort to read, understand, use, and/or modify a program is described as increased

maintenance overhead.

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

 83

The next program, Java Example 71, has five classes: Main , Parent , Child , Dog , and Vet . The

Main class HAS AN object of the Child class and USES the Vet class in a direct way. The instantiated

myChild object is a Child (an object of the Child class), but because of inheritance it IS A Parent (an

object of the Parent class) as well. An instantiated object of the Child class HAS AN instantiated

object of the Dog class. In this case the myChild object HAS the myDog object.

// Java Example 71

public class Main

{

 public static void main(String[] args)

 {

 Child myChild = new Child();

 myChild.firstName = "Peter";

 myChild.lastName = "Thompson";

 myChild.myDog.name = "Lassie";

 Vet.vaccinate(myChild.myDog);

 }

}

class Parent

{

 String firstName;

 String lastName;

}

class Child extends Parent

{

 Dog myDog = new Dog();

}

class Dog

{

 String name;

 boolean vaccinated;

}

class Vet

{

 static void vaccinate(Dog aDog)

 {

 aDog.vaccinated = true;

 }

}

Each Java class can be represented with the help of a Unified Modeling Language (UML) diagram,

and the relationships between the Java classes can also be represented using these UML diagrams.

A UML class diagram has three layers. On top we have the name of the class. In the middle we have the

field variables (primitive variables or objects) of the class, and on the bottom we have the methods of

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

84

the class. When the field variables or methods are private, we put a minus (-) sign in front. When the

field variables or methods are public, we put a plus (+) sign in front. The type (variable type or class) of

the field variables must follow their names. The return type of the methods must follow their names.

An example of a UML diagram is given below, for a class named Library .

Library

+ numberOfBooks : int

+ addressOfLibrary : String

- books : Book[]

+ borrowBook(Book) : void

+ returnBook(Book) : void

+ isAvailable(Book) : boolean

The relationships between the Java classes from the Java Example 71 program can be represented using

UML diagrams in this way:

 HAS A

 IS A

 HAS A

USES

Child

+ firstName : String

+ lastName : String

+ myDog : Dog

Dog

+ name : String

+ vaccinated : boolean

Parent

+ firstName : String

+ lastName : String

Main

+ myChild : Child

+ main(String[]) : void

Child

+ firstName : String

+ lastName : String

+ myDog : Dog

Vet

+ vaccinate(Dog) : void

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

 85

21. Reading from and writing into text files

In a text file every line ends with a special End Of Line (EOL) character (or sequence of characters),

and the text file itself ends with a special End Of File (EOF) character. These special characters depend

on the operating system running on the computer.

21.1. Reading from a text file in sequential order

Reading from text files is done with the help of objects of type (class) File , FileReader , and

BufferedReader .

The File(String pathname) constructor creates a File object from a path name. The path name

specifies the directory and the file name. An example of a path name is "C:\TextFiles\abc.txt". The File

class has basic methods for creating new files and directories, searching for files and directories, finding

some file properties (readable, writable, length, etc.), and deleting files and directories. The boolean

exists() method will return true when the file or directory already exists. The boolean createNewFile()

method will return true when the new file is successfully created. The boolean mkdir() method will

return true when the new directory is successfully created. The boolean delete() method will return

true when the file or directory is successfully deleted. A directory must be empty before it can be

deleted. These methods will throw an IOException whenever the operating system reports an error.

The FileReader(File myFile) constructor creates a FileReader object from a File object. The

FileReader class has methods that will read alphanumeric characters from a text file. The int read()

method will read one character, which is the return value of this function. The int read(char [] c, int

offset, int len) method will read a sequence of characters, placing them into an array. These methods

will throw an IOException whenever there is an error.

The BufferedReader(FileReader myFileReader) constructor creates a BufferedReader object from a

FileReader object. Reading alphanumeric characters from a text file, without a buffer, is not very

efficient, because the text file on the hard disk is accessed for each reading operation, and this is a

relatively slow process. To improve performance the BufferedReader object uses an input buffer (a

space in RAM) of specified or of default size, where it loads big chunks of information from the text

file. In addition to the int read() methods, the BufferedReader class has a String readLine() method

that will read a line of text from a stream of characters. The line of text is the return value of this

function. When there are no more lines to read from a text file, the return value is null . The void close()

method will close the source (the stream) of alphanumeric information and will release any system

resources associated with it. The BufferedReader class also has a boolean ready() method, used to

prevent errors during a function call of read() , something that could happen whenever the stream of

alphanumeric characters is not ready (for example, during online communication).

Warning! The readLine() method will crash when the stream of characters does not end with EOL or

EOF, even when the return value from ready() is true .

Because of all the methods that may throw an IOException during the process of reading from a text

file, the Java code has to be written inside a try - catch block. It looks like this:

try { instructions;

} catch (IOException e) { System.out.println(e.getMessage()); }

The getMessage() method of the IOException class will print the appropriate error message.

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

86

The next program, Java Example 72, reads all the lines of text from a text file, and prints them on the

screen. The program also counts how many lines of text the given file has.

Step 1. Go to the root of your hard disk (C:\) and create a new folder. Right-click with the mouse, then

select New|Folder . Change the name of the folder from New folder to JavaTextFiles .

Step 2. Inside the JavaTextFiles folder create a new text file. Right-click with the mouse, then select

New|Text Document. Change the name of the file from New Text Document.txt to text_file_1.txt .

Step 3. Using Notepad, open the text_file_1.txt file, type the five lines of text shown below, and then

save the text file and close Notepad. The text file should look like this:

Step 4. Double click on the NetBeans shortcut link on the desktop.

Step 5. From the menu select File|New Project... or click on the New Project button.

Step 6. In the New Project window the Java Application option should be already selected. Click on

the Next button.

Step 7. In the New Java Application window type the TextFileRead project name. The Create Main

Class checkbox should be checked. Click on the Finish button.

Step 8. Delete all the comments that were automatically included in the Java program, and align the

curly braces on the left side.

Step 9. Type the Java Example 72 program, which is listed on the next page.

Step 10. Click on the Save All button.

Step 11. Click on the Run Project button.

A successful execution of the Java Example 72 program will produce this output:

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

 87

Please notice that once an alphanumeric character has been read using the read() method, it will not be

read again by a subsequent use of the readLine() method.

// Java Example 72

package textfileread;

import java.io.File;

import java.io.IOException;

import java.io.FileReader;

import java.io.BufferedReader;

public class TextFileRead

{

 public static void main(String[] args)

 {

 try // reading lines from a text file

 {

 File myFile = new File("C:/JavaTextFiles/text_file_1.txt");

 FileReader fr = new FileReader(myFile);

 BufferedReader br = new BufferedReader(fr);

 if (br.ready()) System.out.println("The data stream is ready.");

 int data = br.read();

 System.out.println("the first character is : " + (char) data);

 int n = 0; // the number of text lines in the text file

 String textLine = br.readLine();

 while (textLine != null)

 {

 n = n + 1;

 System.out.println("line " + n + " is : " + textLine);

 textLine = br.readLine();

 }

 br.close();

 System.out.println("The text file has " + n + " lines of text.");

 } catch (IOException e) { System.out.println(e.getMessage()); }

 }

}

A shorter version of this program does not use the myFile object of class File , but instead uses the one-

line expression FileReader fr = new FileReader("C:/JavaTextFiles/text_file_1.txt");

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

88

The next program, Java Example 73, creates a new text file. The program uses two important methods

of the File class, the exists() method and the createNewFile() method.

Start NetBeans, as with the previous program, and in the New Java Application window type the

TextFileCreate project name. Type the Java Example 73 program, save the source file, and run the

project. Verify that an empty file named text_file_2.txt has been created in the C:/JavaTextFiles

directory. Run the program again. The first time that you run the program you should get the message

"The file has been successfully created." . The second time that you run the program you should get the

message "The file is already present there." .

// Java Example 73

package textfilecreate;

import java.io.File;

import java.io.IOException;

public class TextFileCreate

{

 public static void main(String[] args)

 {

 try // create a new text file

 {

 File myFile = new File("C:/JavaTextFiles/text_file_2.txt");

 if(myFile.exists())

 {

 System.out.println("The file is already present there.");

 }

 else

 {

 boolean fvar = myFile.createNewFile();

 if (fvar)

 {

 System.out.println("The file has been successfully created.");

 }

 else

 {

 System.out.println("ERROR: The file has not been created.");

 }

 }

 } catch (IOException e) { System.out.println(e.getMessage()); }

 }

}

The File class has other important methods, for example : isDirectory() , isFile() , delete() , mkdir() ,

renameTo() , setReadOnly() . For a list of all the methods of the File class, please go to :

https://www.tutorialspoint.com/java/java_file_class.htm

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

 89

21.2. Writing into a text file in sequential order

Writing into text files is done with the help of objects of type (class) File , FileWriter ,

BufferedWriter , and PrintWriter .

The File(String pathname) constructor creates a File object from a path name. The path name specifies

the directory and the file name. An example of a path name is "C:\TextFiles\abc.txt".

The FileWriter(File myFile) constructor creates a FileWriter object from a File object. If the text file

with the given path name does not exist, then this constructor will create it.

Warning! If the text file with the given path name exists, then this constructor will erase all the

previous information stored in the text file. In order to save the old information, and append the new

information (add the new information at the end of the existing text file), we have to use the

FileWriter(File myFile, true) constructor.

The FileWriter class has methods that will write alphanumeric characters into a text file. The public

void write() method will write only one alphanumeric character. The public void write(char [] c)

method will write a sequence of characters, as given in an array. The public void write(String text)

method will write a text string. These methods will throw an IOException whenever there is an error.

The BufferedWriter(FileWriter myFileWriter) constructor creates a BufferedWriter object from a

FileWriter object. Writing alphanumeric characters into a text file, without a buffer, is not very

efficient, because the text file on the hard disk is accessed for each writing operation, and this is a

relatively slow process. To improve performance the BufferedWriter object uses an output buffer (a

space in RAM) of specified or of default size, where it saves information that is waiting to be written

into the text file. In addition to the write() methods, the BufferedWriter class has a void newLine()

method that will write a line separator (an EOL code). The void close() method will flush the buffer

(that means it will write all of the updated information into the text file), close the text file, and then

release any system resources associated with it.

The PrintWriter(BufferedWriter myBufferedWriter) constructor creates a PrintWriter object from

a BufferedWriter object. In addition to the well-known print() and println() methods, the

PrintWriter class has a very useful printf() method that prints formatted output. (We can also get

formatted output with the System.out.printf() or with the String.format() methods.) What is the

meaning of "formatted output"? Special symbols are used inside a text string. These symbols act as

placeholders for variables of various types, describing the type of variable, the total number of

characters, the number of decimal places, and other formatting details. The general syntax of the format

specifiers is % [flag][width][.precision] conv_character The special symbols (conversion characters)

for formatted output are:

%d = decimal integer number (Example: %5d for a number written with 5 characters)

%f = floating point number (Example: %6.2f for a number written with 6 characters, including the

decimal point, and 2 decimal places)

%c = alphanumeric character (%C = alphanumeric character with uppercase letter)

%s = text string (%S = text string with uppercase letters)

%h = hashcode (A hashcode is a Java identifier derived from a RAM address.)

%n = new line

Because of all the methods that may throw an IOException during the process of writing into a text

file, the Java code has to be written inside a try - catch block.

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

90

The next program, Java Example 74, creates a new text file called "text_file_3.txt", and writes

(appends) a few lines of text into this file using the write() , newLine() , print() , println() , and

printf() methods.

Start NetBeans, as with the previous program, and in the New Java Application window type the

TextFileWrite project name. Type the program, save the source file, and run the project. Verify that a

text file named text_file_3.txt has been created in the C:/JavaTextFiles directory. Open the

text_file_3.txt file and verify that it has four lines of text. Close the text file. Run the program again.

Open the text_file_3.txt file again and verify that four more lines of text, identical to the first four, have

been added to the old content.

// Java Example 74

package textfilewrite;

import java.io.File;

import java.io.IOException;

import java.io.FileWriter;

import java.io.BufferedWriter;

import java.io.PrintWriter;

public class TextFileWrite

{

 public static void main(String[] args)

 {

 try // write inside an existing text file

 {

 File myFile = new File("C:/JavaTextFiles/text_file_3.txt");

 FileWriter fw = new FileWriter(myFile, true); // append

 BufferedWriter bw = new BufferedWriter(fw);

 bw.write("first line of text");

 bw.newLine();

 PrintWriter pw = new PrintWriter(bw);

 pw.print("second line of text");

 pw.println();

 pw.println("third line of text");

 pw.printf("%d + %d = %d %n", 2, 3, 5);

 pw.close();

 System.out.println("Text lines written successfully.");

 } catch (IOException e) { System.out.println(e.getMessage()); }

 }

}

A shorter version of this program does not use the myFile object of class File , but instead uses the one-

line expression FileWriter fw = new FileWriter ("C:/JavaTextFiles/text_file_3.txt", true);

21.3. Reading from and writing into a text file in random order

We have seen how to read the content of a text file, from the beginning of the file all the way to the end,

in a sequence. We have seen how to write into a text file, by appending information at the end of the

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

 91

file. Can we read from the text file, from any random position in the file? Can we write into the text file,

at any random position in the file? The answer is yes, with the help of the RandomAccessFile class.

The RandomAccessFile(File file, String mode) constructor takes a File object, like before, together

with a second parameter ("r" for a read only text file, or "rw" when writing into the text file is

allowed) and instantiates a RandomAccessFile object. The methods of the RandomAccessFile class

can read from or write into the random access text file at any place.

A random access file looks like a large 1D array of bytes. The same way we can access any byte in the

array using an index, we can access any byte in the text file using a file pointer. We can find the value

of the file pointer using the long getFilePointer() method, and we can change the value of the file

pointer using the seek(long fp) method. The long length() method returns the length of the text file,

which is the number of bytes stored in the file. The setLength(long len) method sets the length of the

text file.

Reading from and writing into the random access file is done with a series of read() and write() method

calls. After each read() or write() operation the file pointer is incremented, so we don't have to change

the file pointer when we read or write in sequential order. When integer numbers that take two or more

bytes are read or written, the high byte goes first.

The int read() method reads from the text file and returns an unsigned byte (a number in the 0 - 255

range), which is handled internally by Java as an int value, because Java does not have the unsigned

byte among the primitive variable types. The method returns -1 when the end of the text file is reached.

The boolean readBoolean() method reads one byte from the text file , and then returns a boolean

value. This return value is false when the byte is 0, and is true otherwise.

The byte readByte() method reads and returns a byte value.

The char readChar() method reads and returns a char value.

The double readDouble() method reads a long value from the text file, converts it to double , and then

returns that double value.

The float readFloat() method reads an int value from the text file , converts it to float , and then returns

that float value.

The int readInt() method reads and returns an int value.

The long readLong() method reads and returns a long value.

The short readShort() method reads and returns a short value.

The String readLine() method reads and returns a line of text (in ASCII format).

The String readUTF() method reads and returns a Unicode text string (in modified UTF-8 format).

The write(int b) method writes into the text file an unsigned byte (a number in the 0 - 255 range),

which is handled internally by Java as an int value, because Java does not have the unsigned byte

among the primitive variable types.

The writeBoolean(boolean a) method writes a byte (1 for true , 0 for false).

The writeByte(int b) method writes a byte value.

The writeChar(int c) method writes a char value.

The writeDouble(double d) method converts the double input variable to long , and then writes into

the text file that long value.

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

92

The writeFloat(float f) method converts the float input variable to int , and then writes into the text file

that int value.

The writeInt(int i) method writes an int value.

The writeLong(long j) method writes a long value.

The writeShort(int k) method writes a short value.

The writeLine(String s) method writes a line of text (in ASCII format).

The writeUTF(String s) method writes a Unicode text string (in modified UTF-8 format).

When we are done with the random access file, we have to call the close() method, in order to save all

the changes to the file, and free all the memory resources no longer needed.

The next program, Java Example 75, reads the text_file_1.txt file, which was created for the Java

Example 72 program. Start NetBeans, as with the previous program, and in the New Java Application

window type the RandomFileRead project name.

A shorter version of this program does not use the myFile object of class File , but instead uses the line

RandomAccessFile raf = new RandomAccessFile ("C:/JavaTextFiles/text_file_1.txt", "rw");

Type the program, save the source file, and run the project.

// Java Example 75

package randomfileread;

import java.io.File;

import java.io.IOException;

import java.io.RandomAccessFile;

public class RandomFileRead

{

 public static void main(String[] args)

 {

 byte[] a = new byte[1000];

 try

 {

 File myFile = new File("C:/JavaTextFiles/text_file_1.txt");

 RandomAccessFile raf = new RandomAccessFile(myFile, "rw");

 long len = raf.length();

 System.out.println("The file length is : " + len);

 raf.seek(0);

 for (int i=0; i<=len; i=i+1) a[i] = (byte) raf.read();

 raf.close();

 for (int i=0; i<=len; i++) System.out.println(i + " " + a[i] + " " + (char) a[i]);

 System.out.println("Text file read successfully.");

 } catch (IOException e) { System.out.println(e.getMessage()); }

 }

}

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

 93

The text file is read one byte at a time, revealing the fact that the text was encoded using ASCII

(American Standard Code for Information Interchange). The text_file_1.txt file was saved in this way

in Notepad. For each byte in the text file, the program will print the file pointer (the index) of that byte,

the numerical value of that byte (an ASCII code), and the ASCII alphanumeric character corresponding

to that byte. The output from the program should look like this:

For a computer running the Windows operating system, the End Of Line (EOL) code consists of a pair

of two characters : Carriage Return (CR , \r , ASCII code 13) and Line Feed (LF , \n , ASCII code 10).

For a computer running UNIX the EOL code is just LF, while for a Macintosh computer the EOL code

is just CR. The End Of File code (EOF, there is no ASCII code for it) is a negative number. The read()

method returns -1 when it reads the EOF code, and this is the number printed out by the program. The

length of the text file, as reported by the length() method, excludes the byte used by the EOF code.

Open the text_file_1.txt file in Notepad, and then save it (File | Save As...) using other available

encodings : Unicode , Unicode big endian , UTF-8 . Run the Java Example 75 program again, to see the

differences between the different encodings. A Unicode alphanumeric character takes two bytes. For the

English alphabet one byte is the ASCII code and the other byte is 0 . For Unicode encoding the second

byte is 0 , but for Unicode big endian encoding the first byte is 0 . For the English alphabet the UTF-8

encoding looks just like ASCII, it was designed like this in order to save space on the hard disk.

At the end of this activity, save the text_file_1.txt file using the ANSI encoding. We need the text file

saved like this for the next exercise.

The next program, Java Example 76, will make some changes to the text_file_1.txt file.

Start NetBeans, as with the previous program, and in the New Java Application window type the

RandomFileWrite project name. Type the program, save the source file, and run the project.

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

94

In the text_file_1.txt file the two words "first" (that started at a file pointer of 0) and "third" (that started

at a file pointer of 41) should have swapped position. Open the text_file_1.txt file and check it. Close

the text file. Run the program again. Open the text_file_1.txt file again and verify that the changes have

been reversed.

// Java Example 76

package randomfilewrite;

import java.io.File;

import java.io.IOException;

import java.io.RandomAccessFile;

public class RandomFileWrite

{

 public static void main(String[] args)

 {

 byte[] a = new byte[5];

 byte[] b = new byte[5];

 try

 {

 File myFile = new File("C:/JavaTextFiles/text_file_1.txt");

 RandomAccessFile raf = new RandomAccessFile(myFile, "rw");

 raf.seek(0);

 for (int i=0; i<5; i=i+1) a[i] = (byte) raf.read();

 raf.seek(41);

 for (int i=0; i<5; i=i+1) b[i] = (byte) raf.read();

 raf.seek(0);

 for (int i=0; i<5; i=i+1) raf.write(b[i]);

 raf.seek(41);

 for (int i=0; i<5; i=i+1) raf.write(a[i]);

 raf.close();

 System.out.println("Text file changed successfully.");

 } catch (IOException e) { System.out.println(e.getMessage()); }

 }

}

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

 95

22. Quizmaker - an example of a useful Java application

We now look at a longer Java program, Quizmaker , an example of a Java program that has a useful

purpose. Many of the Java programming concepts developed so far (with the help of short, simple Java

Example programs) are now brought together, to make this useful Java application. This is how

complexity increases in a system. In a similar way, with the help of many simple Lego bricks, you can

build very complex structures. You may think of all the Java primitive variable types, classes, methods,

and programming structures (that you have now mastered) as your Lego bricks. Build away - have fun

programming!

The Java Quizmaker program will make a quiz with multiple choice (matching) questions. The

program will also make the related answer key. The program starts by reading, from a text file, a list of

questions and their answers. You can also have a list of keywords and their definitions, a vocabulary set

in a foreign language, or any other kind of matching items.

Step 1. Go to the C:\JavaTextFiles folder.

Step 2. Inside the JavaTextFiles folder create a new text file. Right-click with the mouse, then select

New|Text Document. Change the name of the file from New Text Document.txt to Q_and_A.txt .

Step 3. Using Notepad, open the Q_and_A.txt file, type the 24 lines of text shown on the next page,

and then save the text file and close Notepad. Please notice that every question takes one line, every

answer takes one line, and every answer follows its related question. The text file should look like this:

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

96

Step 4. Double click on the NetBeans shortcut link on the desktop.

Step 5. From the menu select File|New Project... or click on the New Project button.

Step 6. In the New Project window the Java Application option should be already selected. Click on

the Next button.

Step 7. In the New Java Application window type the Quizmaker project name. The Create Main

Class checkbox should be checked. Click on the Finish button.

Step 8. Delete all the comments that were automatically included in the Java program, and align the

curly braces on the left side.

Step 9. Type the Quizmaker program listed on the next pages.

Step 10. Click on the Save All button.

Step 11. Click on the Run Project button.

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

 97

// Quizmaker

package quizmaker;

import java.util.Scanner;

import java.io.File;

import java.io.IOException;

import java.io.FileReader;

import java.io.BufferedReader;

import java.io.FileWriter;

import java.io.BufferedWriter;

import java.util.ArrayList;

import java.util.Collections;

public class Quizmaker

{

 public static void main(String[] args)

 {

 String[] questions1 = new String[100]; // from the input text file

 String[] answers1 = new String[100];

 String[] questions2 = new String[100]; // after the first shuffle

 String[] answers2 = new String[100];

 String[] questions3 = new String[100]; // after the second shuffle

 String[] answers3 = new String[100];

 int nTotal = 0; // the total number of questions in the input text file

 int nQuiz = 0; // the number of questions in the quiz

 // READ THE QUESTIONS AND THE ANSWERS FROM A TEXT FILE

 Scanner kbdInput = new Scanner(System.in);

 System.out.println("What is the path name of the input text file?");

 String textfile1 = kbdInput.next(); // input : C:\JavaTextFiles\Q_and_A.txt

 try

 {

 File myFile1 = new File(textfile1);

 FileReader fr1 = new FileReader(myFile1);

 BufferedReader br1 = new BufferedReader(fr1);

 boolean Q = true; // the first text line is always a question

 String textLine = br1.readLine();

 while (textLine != null)

 {

 if(Q) // the text line is a question

 {

 questions1[nTotal] = textLine;

 Q = false; // the next text line will be an answer

 }

 else // the text line is an answer

 {

 answers1[nTotal] = textLine;

 Q = true; // the next text line will be a question

 nTotal = nTotal + 1;

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

98

 }

 textLine = br1.readLine();

 }

 br1.close();

 System.out.println("The text file has " + nTotal + " questions.");

 } catch(IOException e) { System.out.println(e.getMessage()); }

 for(int i=0; i<nTotal; i=i+1)

 {

 System.out.println(i + " " + questions1[i] + " " + answers1[i]);

 }

 System.out.println("How many questions are there in the quiz?");

 nQuiz = kbdInput.nextInt(); // input : 7

 // SCRAMBLE THE QUESTIONS AND THE ANSWERS

 ArrayList<Integer> myList1 = new ArrayList<Integer>();

 for(int i=0; i<nTotal; i=i+1) myList1.add(i);

 Collections.shuffle(myList1);

 System.out.println("myList1 after the shuffle : ");

 for(int i=0; i<nTotal; i=i+1)

 {

 int j = myList1.get(i);

 System.out.print(j + " ");

 questions2[i] = questions1[j];

 answers2[i] = answers1[j];

 }

 System.out.println();

 ArrayList<Integer> myList2 = new ArrayList<Integer>();

 for(int i=0; i<nQuiz; i=i+1) myList2.add(i);

 Collections.shuffle(myList2);

 System.out.println("myList2 after the shuffle : ");

 for(int i=0; i<nQuiz; i=i+1)

 {

 int j = myList2.get(i);

 System.out.print(j + " ");

 questions3[i]= questions2[i];

 answers3[i] = answers2[j];

 }

 System.out.println();

 // WRITE THE QUIZ INTO A TEXT FILE

 System.out.println("What is the path name of the text file with the quiz?");

 String textfile2 = kbdInput.next(); // input : C:\JavaTextFiles\quiz.txt

 try

 {

 File myFile2 = new File(textfile2);

 FileWriter fw2 = new FileWriter(myFile2);

 BufferedWriter bw2 = new BufferedWriter(fw2);

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

 99

 for(int i=0; i<nQuiz; i=i+1)

 {

 bw2.write(i+1 + ". ");

 bw2.write(questions3[i]);

 bw2.newLine();

 }

 bw2.newLine();

 for(int i=0; i<nQuiz; i=i+1)

 {

 bw2.write((char)(65+i) + ". "); // 65 is ASCII code for "A"

 bw2.write(answers3[i]);

 bw2.newLine();

 }

 bw2.close();

 } catch(IOException e) { System.out.println(e.getMessage()); }

 // WRITE THE ANSWER KEY INTO A TEXT FILE

 System.out.println("What is the path name of the text file with the answer key?");

 String textfile3 = kbdInput.next(); // input : C:\JavaTextFiles\key.txt

 try

 {

 File myFile3 = new File(textfile3);

 FileWriter fw3 = new FileWriter(myFile3);

 BufferedWriter bw3 = new BufferedWriter(fw3);

 for(int i=0; i<nQuiz; i=i+1)

 {

 bw3.write(i+1 + " - ");

 for(int j=0; j<nQuiz; j=j+1)

 {

 if(i==myList2.get(j))

 {

 bw3.write((char)(65+j)); // 65 is ASCII code for "A"

 }

 }

 bw3.newLine();

 }

 bw3.close();

 } catch(IOException e) { System.out.println(e.getMessage()); }

 }

}

Step 11. Answer the questions asked by the running Quizmaker program.

Answer the first question with C:\JavaTextFiles\Q_and_A.txt

Answer the second question with a number between 1 and 12. For my example, I used number 7.

Answer the third question with C:\JavaTextFiles\quiz.txt

Answer the fourth question with C:\JavaTextFiles\key.txt

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

100

A successful execution of the Quizmaker program will produce something like this:

Step 12. Go to the C:\JavaTextFiles folder and make sure that two new text files, quiz.txt and key.txt ,

have been created. Open these two text files, using Notepad, and look at their content. You should see

something like this:

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

 101

How does the Quizmaker program work? The Quizmaker program is modular, it has four main parts.

These four parts, in the program listing, start at the comments in upper case letters.

In the first part, the program will read the questions and the answers from the input text file. The user

has to give the path name (directory and file name) of the input text file. The text lines from this file are

first read and then written into two String arrays, questions1 for the questions and answers1 for the

answers. The program uses a boolean variable named Q in order to decide whether the most recently

read text line is a question or an answer. While reading the questions and the answers, the program is

also incrementing a counter, an int variable named nTotal , that starts equal to 0 and ends up equal to

the total number of questions in the input text file. The program will also give some information to the

user, printing the total number of questions, as well as all the questions and their answers. After this the

user will give the number of questions in the quiz, information stored in an int variable named nQuiz .

In the second part, the program will randomly select nQuiz questions from the total of nTotal

questions. This is done with the help of myList1 , an ArrayList list of Integer objects. The nTotal

integer numbers 0, 1, 2, ... , nTotal-1, corresponding to the different questions in the input text file, are

scrambled using the shuffle() method. The scrambled questions are saved into the questions2 String

array, and their answers are saved into the answers2 String array, in the same order. In other words,

questions2[i] = questions1[j]; and answers2[i] = answers1[j]; , where j = myList1.get(i); .

Only the first nQuiz elements of the questions2 and answers2 String arrays are then used to generate

the quiz. After the random selection of the nQuiz questions, the program will scramble their answers.

This is done with the help of a second ArrayList list of Integer objects named myList2 . The nQuiz

integer numbers 0, 1, 2, ... , nQuiz-1, corresponding to the different questions in the output text file, are

scrambled using the shuffle() method once more. The unscrambled questions are saved into the

questions3 String array, and their scrambled answers are saved into the answers3 String array. In

other words, questions3[i] = questions2[i]; and answers3[i] = answers2[j]; , where j = myList2.get(i); .

To help you understand the process described above, we explicitly display the content of all these

String arrays and ArrayList lists, as it happened during the trial run shown on the previous pages.

i questions1[i] answers1[i] j = myList1.get(i)

0 First month? January 4

1 Second month? February 2

2 Third month? March 1

3 Fourth month? April 10

4 Fifth month? May 3

5 Sixth month? June 8

6 Seventh month? July 11

7 Eighth month? August 9

8 Ninth month? September 0

9 Tenth month? October 7

10 Eleventh month? November 6

11 Twelfth month? December 5

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

102

i questions2[i] answers2[i] j = myList2.get(i)

0 Fifth month? May 5

1 Third month? March 0

2 Second month? February 6

3 Eleventh month? November 4

4 Fourth month? April 3

5 Ninth month? September 1

6 Twelfth month? December 2

7 Tenth month? October

8 First month? January

9 Eighth month? August

10 Seventh month? July

11 Sixth month? June

i questions3[i] answers3[i] i + 1 (char) (65 + i)

0 Fifth month? September 1 A

1 Third month? May 2 B

2 Second month? December 3 C

3 Eleventh month? April 4 D

4 Fourth month? November 5 E

5 Ninth month? March 6 F

6 Twelfth month? February 7 G

In the third part, the program will write the quiz into the first output text file. The user has to give the

path name (directory and file name) of the text file with the quiz. The program will just copy in order

the questions from questions3 and the answers from answers3 . However, since we don't want the

answers given to these matching questions to look like a spider web, it is recommended to label the

questions with 1, 2, 3, 4, 5, 6, 7 and the answers with A, B, C, D, E, F, G. For this purpose the program

uses the expression i + 1 in front of the questions and the expression (char) (65 + i) in front of the

answers. Here the (char) typecast operator turns an ASCII code into an upper case letter.

In the fourth part, the program will write the answer key into the second output text file. The user has to

give the path name (directory and file name) of the text file with the answer key. The program will just

copy in order the numbers i + 1 representing the questions from questions3 (same questions and in the

same order as in questions2), followed by the letter (char) (65 + j) representing the correct answer

from answers3 . The program has to unscramble the scrambled answers, this means it has to determine

the value of j for each value of i .

Călin Galeriu Foundations of Java Programming for the OOP Option of the IB CS Exam

 103

The answer key to the quiz consists of all the questions from questions2 (same questions and in the

same order as in questions3), followed by the correct answer found in answers2 at the position with

the same index i . However, the same correct answer must be found in answers3 at the position with

index j . In other words, for each i , questions3[i] = questions2[i] , and the correct answer is

answers2[i] , which must be equal to answers3[j] , the correct answer listed in the answer key. We are

therefore looking for the j value which solves the equation answers2[i] = answers3[j] .

When we have scrambled the answers, we have taken the answer from the position with index

j = myList2.get(i) in answers2 and we have written it at the position with index i in answers3 . In

other words, answers3[i] = answers2[j] .

Let us now relabel the index variables. Instead of i we will write j , and instead of j we will write i . We

can do that, i and j are dummy variables that take all the values from 0 to nQuiz-1 , and each i in this set

is related to a j in the same set. The relations from the above paragraph become i = myList2.get(j)

and answers3[j] = answers2[i] . But this last equation is exactly the relation we were looking for! It

happens when i = myList2.get(j) .

To summarize, for a question with position index i and number i + 1 in the quiz, the answer is the letter

(char) (65 + j) , where the value of j is the solution to the equation i = myList2.get(j) . The program

solves this equation by guess and check, testing all the possible values of j until a match is found.

